全等三角形单元练习题及答案

合集下载

全等三角形单元测试题(含答案)

全等三角形单元测试题(含答案)

全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。

人教版八年级数学上册《第十二章全等三角形》单元练习题(含答案)

人教版八年级数学上册《第十二章全等三角形》单元练习题(含答案)

第十二章《全等三角形》单元练习题一、选择题1.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A. 4B. 3C. 6D. 52.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等3.如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于C,D,则点P到∠AOB两边距离之和()A.小于CDB.大于CDC.等于CDD.不能确定4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°5.已知,如图,AC=BC,AD=BD,下列结论中不正确的是()A.∠ACD=∠BDCB.∠ACO=∠BCOC.CD平分∠ACD和∠ADBD.AB平分∠CAD和∠CBD6.如图所示,△ABC≌△DEC,则边AB的对应边是()A.DEB.DCC.ECD.BC7.如图所示,Rt△ABE≌Rt△ECD,点B、E、C在同一直线上,则结论:①AE=ED;②AE⊥DE;③BC=AB+CD;④AB∥DC中成立的是()A.仅①B.仅①③C.仅①③④D.仅①②③④8.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,∠A=40°,则∠BOC的大小为().A. 110°B. 120°C. 130°D. 140°二、填空题9.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是.10.如图:已知∠1=∠2,要根据SAS判定△ABD≌△ACD,则需要补充的条件为.11.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是 ___________.12.下列条件中,能判定两个直角三角形全等的个数有________个.①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一条直角边对应相等;④面积相等.13.如图,△ABC中,AB=AC,AE=CF,BE=AF,则∠E=________,∠CAF=__________.14.如图,已知AB=AD,∠BAE=∠DAC,要用SAS判定△ABC≌△ADE,可补充的条件是.15.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是________________.16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.三、解答题(共5小题,每小题分,共0分)17.已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长.18.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.19.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?20.如图所示,已知AE⊥AB,△ACE≌△AFB,CE、AB、BF分别交于点D、M.证明:CE⊥BF.21.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.第十二章《全等三角形》单元练习题答案解析1.【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.2.【答案】D【解析】已知有点到∠BAC的两边的距离,根据角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上,要满足∠1=∠2,须有DE=DF,于是答案可得.3.【答案】A【解析】如图,过点P作PE⊥OA于E,PF⊥OB于F,则PE、PF分别为点P到∠AOB两边的距离,∵PE<PC,PF<PD,∴PE+PF<PC+PD,∴PE+PF<CD,即点P到∠AOB两边距离之和小于CD.故选A.4.【答案】B【解析】∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选B.5.【答案】A【解析】在△ACD和△BCD中,∴△ACD≌△BCD,∴∠ACD=∠BCD,∠ADC=∠BDC,∴故选项B、C、D不符合要求;根据已知不能推出∠ACD=∠BDC,故本选项正确;故选A.6.【答案】A【解析】根据全等三角形中互相重合的边是对应边,则可得到结论.7.【答案】D【解析】∵Rt△ABE≌Rt△ECD,∴AE=ED,①成立;∵Rt△ABE≌Rt△ECD,∴∠AEB=∠D,又∠DEC+∠D=90°,∴∠DEC+∠ABE=90°,即∠AED=90°,∴AE⊥DE,②成立;∵Rt△ABE≌Rt△ECD,∴AB=EC,BE=CD,又BC=BE+EC,∴BC=AB+CD,③成立;∵∠B+∠C=180°,∴AB∥DC,④成立,故选D.8.【答案】A【解析】∵O到三角形三边距离相等,∴AO,BO,CO都是三角形的角平分线,∴有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∴∠ABC+∠ACB=180-40=140,∴∠OBC+∠OCB=70,∴∠BOC=180-70=110°.9.【答案】全等三角形的对应角相等【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',利用全等三角形的对应角相等,得到∠A′O′B′=∠AOB.10.【答案】BD=CD【解析】如图,∵在△ABD与△ACD中,∠1=∠2,AD=AD,∴添加BD=CD时,可以根据SAS判定△ABD≌△ACD,故答案是BD=CD.11.【答案】AB=AC【解析】由题中点定义可知BD=CD,图中公共边AD=AD,要想用SSS判定△ABD≌△ACD,只要添加AB=AC即可.12.【答案】3【解析】①两条直角边对应相等,利用SAS,故本选项正确;②斜边和一锐角对应相等,符合判定AAS或ASA,故本选项正确;③斜边和一条直角边对应相等,符合判定HL;④面积相等不一定全等,故本选项错误.故答案为3.13.【答案】∠F;∠ABE【解析】∵AB=AC,AE=CF,BE=AF,∴△AEB≌△CFA(SSS),∴∠E=∠F,∠CAF=∠ABE.14.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC≌△ADE(SAS).15.【答案】∠ADB=∠CBD【解析】∠ADB=∠CBD,理由是:∵在△AOD和△COB中,∴△ABD≌△CDB(SAS),故答案为∠ADB=∠CBD.16.【答案】(-2,0)【解析】∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(-2,0).故答案为(-2,0).17.【答案】解:∵△ABC≌△DFE,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB∴∠E=180°-100°-50°=30°,∵DF=12cm,∴AB=12cm.【解析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E的度数,再根据DF=AB,即可求出AB的长.18.【答案】解:(1)∵在△ADE和△CBF中,∴△ADE≌△CBF(SSS),∴∠D=∠B.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∵∠AED+∠AEO=180°,∠CFB+∠CFO=180°,∴∠AEO=∠CFO,∴AE∥CF.【解析】(1)根据SSS推出△ADE≌△CBF,根据全等三角形的性质推出即可;(2)根据全等三角形的性质推出∠AED=∠CFB,求出∠AEO=∠CFO,根据平行线的判定推出即可.19.【答案】(1)解:∵△BAD≌△ACE,∴BD=AE,AD=CE,∴BD=AE=AD+DE=CE+DE,即BD=DE+CE.(2)解:△ABD满足∠ADB=90°时,BD∥CE,理由是:∵△BAD≌△ACE,∴∠E=∠ADB=90°(添加的条件是∠ADB=90°),∴∠BDE=180°-90°=90°=∠E,∴BD∥CE.【解析】(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;(2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.20.【答案】证明:∵AE⊥AB,∴∠BAE=90°,∵△ACE≌△AFB,∴∠CAE=∠BAF,∠ACE=∠F,∴∠CAB+∠BAE=∠BAC+∠CAF,∴∠CAF=∠BAE=90°,而∠ACE=∠F,∴∠FMC=∠CAF=90°,∴CE⊥BF.【解析】先利用垂直定义得到∠BAE=90°,再利用三角形全等的性质得∠CAE=∠BAF,∠ACE=∠F,则∠CAF=∠BAE=90°,然后根据三角形内角和定理易得∠FMC=∠CAF=90°,然后根据垂直的定义即可得到结论.21.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE 和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC-BC=DB-BC,即AB=CD.【解析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.。

全等三角形单元测试卷(含答案)

全等三角形单元测试卷(含答案)

新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()SAS C C.ASA D.AASSSS B B.SAS A.SSS 3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()第1页(共12页)A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是( )边上的任意一点,下列选项正确的是(A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.8.(5分)如图,锐角△ABC和锐角△AʹBʹCʹ中,AD,AʹDʹ分别是BC,BʹCʹ上的高,,则应补充的条件是 (填写且AB=AʹBʹ,AD=AʹDʹ.要使△ABC≌△AʹBʹCʹ,则应补充的条件是一个即可).9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.新人教版八年级数学上册《第12章 全等三角形》2016年单元测试卷(4)参考答案与试题解析一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是(的度数是( )A .72°B .60°C .58°D .50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a 与a ,c 与c 分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D .【点评】本题考查全等三角形的知识.本题考查全等三角形的知识.解题时要认准对应关系,解题时要认准对应关系,解题时要认准对应关系,如果把对应角搞如果把对应角搞错了,就会导致错选A 或C .2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSS SSS B B .SAS SAS C C .ASA D .AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.(5分)下列说法正确的是(分)下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.【点评】本题主要考查全等三角形的定义,全等是指形状相同,大小相同,两个方面必须同时满足.4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为(的长度为( )A.10cm B.6cm C.4cm D.2cm【分析】首先根据角平分线的性质可得CD=DE,然后证明Rt△ACD≌Rt△AED(HL),可得AE=AC ,进而得到EB 的长.【解答】解:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,,∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选:C .【点评】此题主要考查了全等三角形的判定与性质,此题主要考查了全等三角形的判定与性质,以及角平分线的性质,以及角平分线的性质,以及角平分线的性质,关键关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.5.(5分)如图,AE ∥FD ,AE=FD ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=BC B .EC=BF C .∠A=∠D D .AB=CD【分析】添加条件AB=CD 可证明AC=BD ,然后再根据AE ∥FD ,可得∠A=∠D ,再利用SAS 定理证明△EAC ≌△FDB 即可.【解答】解:∵AE ∥FD ,∴∠A=∠D ,∵AB=CD ,∴AC=BD ,在△AEC 和△DFB 中, ∴△EAC ≌△FDB (SAS ),故选:D .【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(5分)点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,下列选项正确的是(边上的任意一点,下列选项正确的是( )A .PQ ≥5 B .PQ >5 C .PQ <5 D .PQ ≤5【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【解答】解:∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5, ∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ ≥5.故选:A .【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.二、填空题(每小题5分,共20分)7.(5分)如图,△ABC ≌△DCB ,∠DBC=40°,则∠AOB= 80 °.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC ,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC ≌△DCB ,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB +∠DBC=40°+40°40°=80°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.8.(5分)如图,锐角△ABC和锐角△AʹBʹCʹ中,AD,AʹDʹ分别是BC,BʹCʹ上的高,,则应补充的条件是 CD=CʹDʹ(或且AB=AʹBʹ,AD=AʹDʹ.要使△ABC≌△AʹBʹCʹ,则应补充的条件是AC=AʹCʹ,或∠C=∠Cʹ或∠CAD=∠CʹAʹDʹ)答案不唯一)答案不唯一 (填写一个即可).【分析】根据判定方法,结合图形和已知条件,寻找添加条件.【解答】解:我们可以先利用HL判定△ABD≌△AʹBʹDʹ得出对应边相等,对应角相等.CD=C´D´D´,可以利用SAS来判定其全等;此时若添加CD=C´添加∠C=∠C´,可以利用AAS判定其全等;还可添加AC=AʹCʹ,∠CAD=∠CʹAʹDʹ等.故答案为CD=CʹDʹ(或AC=AʹCʹ,或∠C=∠Cʹ或∠CAD=∠CʹAʹDʹ)答案不唯一.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=且到三边的距离相等,若∠120°.【分析】根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC +∠OCB ,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵点O 在△ABC 内,且到三边的距离相等,∴点O 是三个角的平分线的交点,∴∠OBC +∠OCB=(∠ABC +∠ACB )=(180°﹣∠A )=(180°﹣60°)=60°,在△BCO 中,∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣60°60°=120°=120°. 故答案为:120°.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O 是三个角的平分线的交点是解题的关键.10.(5分)如图,BE ⊥AC ,垂足为D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E= 27 °.【分析】由BE 垂直于AC ,且AD=CD ,利用线段垂直平分线定理得到AB=CB ,即三角形ABC 为等腰三角形,利用三线合一得到BE 为角平分线,求出∠ABE 度数,利用SAS 得到三角形ABD 与三角形CED 全等,利用全等三角形对应角相等即可求出∠E 的度数.【解答】解:∵BE ⊥AC ,AD=CD ,∴AB=CB ,即△ABC 为等腰三角形,∴BD 平分∠ABC ,即∠ABE=∠CBE=∠ABC=27°,在△ABD 和△CED 中,,∴△ABD ≌△CED (SAS ),∴∠E=∠ABE=27°,故答案为:27【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)【分析】利用SAS判定三角形全等,得出对应边相等.【解答】证明:在△ABD和△ACD中,∴△ABD≌△ACD(SAS).∴BD=CD(全等三角形对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF ⊥DE ,CF 平分DE ,理由是:∵AD ∥BE ,∴∠A=∠B ,在△ACD 和△BEC 中,∴△ACD ≌△BEC (SAS ),∴DC=CE ,∵CF 平分∠DCE ,∴CF ⊥DE .【点评】本题考查了全等三角形的性质和判定,本题考查了全等三角形的性质和判定,平行线的性质,平行线的性质,平行线的性质,等腰三角形的性等腰三角形的性质等知识点,关键是求出DC=CE ,主要考查了学生运用定理进行推理的能力.13.(18分)如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD=∠DBC ,AB=DB ,EB=CB ,M 、N 分别是AE 、CD 的中点,判断BM 与BN 的关系,并说明理由.【分析】根据SAS 推出△ABE ≌△DBC ,推出AE=DC ,∠EAB=∠BDC ,∠AEB=∠DCB ,求出∠ABD=∠DBC=90°,BM=AM=EM=AE ,BN=CN=DN=CD ,推出∠ABM=∠DBN ,∠EBM=∠NBC 即可.【解答】解:BM=BN ,BM ⊥BN ,理由是:在△ABE 和△DBC 中,,∴△ABE ≌△DBC (SAS ),∴AE=DC ,∠EAB=∠BDC ,∠AEB=∠DCB ,∵∠ABD=∠DBC ,∠ABD +∠DBC=180°,∴∠ABD=∠DBC=90°,∵M 为AE 的中点,N 为CD 的中点,∴BM=AM=EM=AE ,BN=CN=DN=CD ,∴BM=BN ,∠EAB=∠MBA ,∠CDB=∠DBN ,∠AEB=∠EBM ,∠NCB=∠NBC , ∵∠EAB=∠BDC ,∠AEB=∠DCB ,∴∠ABM=∠DBN ,∠EBM=∠NBC ,∴∠ABC=2∠DBN +2∠EBM=180°,∴∠EBN +∠EBM=90°,∴BM ⊥BN .【点评】本题考查了全等三角形的性质和判定,本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,直角三角形斜边上中线性质,直角三角形斜边上中线性质,等等腰三角形的性质的应用,主要考查学生的推理能力.。

全等三角形单元测试(含答案)

全等三角形单元测试(含答案)

全等三角形单元测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列作图属于尺规作图的是A.用量角器画出∠AOB,使∠AOB等于已知角αB.用圆规和直尺作线段AB,使AB等于已知线段αC.用刻度尺作出线段AB等于2倍的已知线段mD.用三角板作45°的角2.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是A.带①和②去B.只带②去C.只带③去D.都带去3.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长,判定△ABC≌△DEC的理由是A.SSS B.ASA C.SAS D.AAS4.下列条件中,能判定△ABC≌△DEF的是A.AB=DE,BC=EF,∠A=∠E B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.∠A=∠D,∠B=∠E,AC=DF5.如图,AB=CD,AD=CB,那么下列结论中错误的是A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD6.如图,AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小是A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定7.如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形共有对A.5 B.3 C.6 D.48.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF ≌△CDE;③点D在∠BAC的平分线上.正确的是A.①B.②C.①②D.①②③9.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是A.45°B.55°C.60°D.75°10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DA平分∠CDE;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE +AC =AB ,其中正确的有A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每小题3分,共30分)11.若△ABC ≌△A ′B ′C ′,AB =3,∠A ′=30°,则A ′B ′=__________,∠A =__________°.12.如图,OC 为AOB ∠的平分线,CM OB ⊥,3CM =,则点C 到射线OA 的距离为__________.13.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5,则△DEF 的周长为__________.14.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F .若EF =8 cm ,则AE =__________cm .16.如图,△ABC 中,D 是AB 的中点,DE ⊥AB ,∠ACE +∠BCE =180°,EF ⊥AC 交AC 于F ,AC =12,BC =8,则AF =________.17.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC 交边AC 于点D ,CD =4,△ABD 的面积为10,则AB 的长是__________.18.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=__________.19.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是__________.20.如图,Rt △ABC 中,9083C AC BC ∠=︒==,,,AE AC P Q ⊥,,分别是AC AE ,上的动点,且PQ AB =,当AP =__________时,才能使ABC △和PQA △全等.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .22.如图,点E ,F 在AB 上,CE 与DF 交于点G ,AD =BC ,∠A =∠B ,AE =BF .求证:GE =GF .23.如图,12AC AE AB AD =∠=∠=,,.求证:BC DE =.24.如图,在Rt △ABC 中,∠C =90°.作∠BAC 的平分线AP 交边BC 于点D .(保留作图痕迹,不写作法).若∠BAC =28°,求∠ADB 的度数.25.如图,AD 是BAC ∠的平分线,点E 在AB 上,且AE AC =,EF BC ∥交AC 于点F .试说明:EC平分DEF ∠.26.如图,在△BCE 中,AC ⊥BE ,AB =AC ,点A 、点F 分别在BE 、CE 上,BE 、CF 相交于点D ,BD =CE .求证:AD =AE .27.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BA C.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.28.如图,△ABC是边长为5 cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿射线AB,BC运动,且它们的速度都为2 cm/s.设点P的运动时间为t(s).(1)当t为何值时,△ABQ≌△CBP;(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.3.【答案】C【解析】因为CD=CA,CE=CB,ACB DCE∠=∠,所以△ABC≌△DEC(SAS).故选C.4.【答案】D【解析】A.AB=DE,BC=EF,∠A=∠E,SSA不能确定全等;B.∠A=∠E,AB=EF,∠B=∠D,AB和EF不是对应边,不能确定全等;C.∠A=∠D,∠B=∠E,∠C=∠F,AAA不能确定全等;D.∠A=∠D,∠B=∠E,AC=DF,根据AAS,能判断△ABC≌△DEF.故选D.5.【答案】B【解析】∵在△ABD和△CDB中,AB CD AD CB BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C,∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.6.【答案】A【解析】∵AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,PA=PB,∠CPA=∠DPB,∴△CPA≌△∠DPB(AAS),∴PC=PD,∴∠1=∠2,故选A.7.【答案】B【解析】根据AB=CD,AE=CF,∠BAE=∠DCF可得:△ABE≌△CDF;根据CE=AF,∠DAF=∠BCE,∠DFA=∠BEC可得:△ADF≌△CBE;根据∠DAC=∠BCA,∠BAC=∠DCA,AC=CA可得:△ACD≌△CAB,共有3对全等三角形,故选B.8.【答案】D∵△ABE≌△ACF,∴AE=AF,∵△BDF≌△CDE,∴DF=DE,∵在△AFD和△AED中,AF AE AD AD DF DE=⎧⎪=⎨⎪=⎩,∴△AFD≌△AED(SSS),∴∠FAD=∠EAD,∴AD平分∠BAC,即点D在∠BAC的平分线上.综上所述,在本题给出的结论中,正确的是①②③.故选D.9.【答案】C【解析】∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C.10.【答案】B【解析】根据题中条件,结合图形及角平分线的性质得到:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD 平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∴BE+AC=AB,∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.【答案】3;30【解析】由对应角相等,对应边相等,A′B′=AB ,∠A =30°.故答案为:3;30. 12.【答案】3【解析】如图,过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF .∵CM =3,∴CF =3.故答案为:3.角的余角相等),在△FCE 和△ABC 中,90ECF BEC BC ACB FEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABC ≌△FCE (ASA ),∴AC =EF ,∵AE =AC -CE ,BC =2 cm ,EF =8 cm ,∴AE =8-2=6 cm ,故答案为:6. 16.【答案】10【解析】如图,连接AE ,BE ,过E 作EG ⊥BC 于G ,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,AE BEEF EG=⎧⎨=⎩,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC-CF=12-x,BG=BC+CG=8+x,∴12-x=8+x,解得x=2,∴AF=12-2=10.故答案为:10.17.【答案】5【解析】如图,过点D作DE⊥AB于点E.∵BD平分∠ABC.又∵DE⊥AB,DC⊥BC,∴DE=DC=4.∵△ABD的面积=12·AB·DE=12×AB×4=10,∴AB=5.故答案为:5.20.【答案】3或8【解析】分为两种情况:①当AP=3时,∵BC=3,∴AP=BC,∵∠C=90°,AE⊥AC,∴∠C=∠QAP=90°,∴在Rt △ABC 和Rt △QAP 中,AB PQ BC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △PQA (HL ); ②当AP =8时,∵AC =8,∴AP =AC ,∵∠C =90°,AE ⊥AC ,∴∠C =∠QAP =90°,∴在Rt △ABC 和Rt △QAP中,AB PQ AC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △QAP (HL ),故答案为:3或8.22.【解析】∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE ,在△ADF 与△BCE 中,=AD BC A B AF BE =⎧⎪⎨⎪=⎩∠∠,∴△ADF ≌△BCE (SAS ),∴∠CEB =∠DFA ,∴GE =GF .23.【解析】∵12∠=∠,∴12BAE BAE ∠+∠=∠+∠,即BAC DAE ∠=∠,在BAC △和DAE △中,AC AE BAC DAE AB AD =⎧⎪∠=∠⎨⎪=⎩,∴BAC △≌DAE △(SAS ),∴BC DE =.24.【解析】(1)如下图所示,AD 为所求的角平分线:(2)∵∠BAC 的平分线AP ,∠BAC =28°, ∴∠CAD =BAD =14°,又∵∠C =90°,∠ADB =∠C +∠CAD ,∴∠ADB =90°+14°=104°.26.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CE AB AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .27.【解析】(1)∵∠BAC =∠EAD ,∴∠BAC -∠EAC =∠EAD -∠EAC ,即:∠BAE=∠CAD,在△ABE和△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,28.【解析】(1)∵△ABQ≌△CBP,∴BQ=BP,∴2t=5-2t,∴t=54,∴t=54s时,△ABQ≌△CBP,(2)结论:∠CMQ=60°不变,理由:∵△ABC是等边三角形,∴∠ABQ=∠CAP,AB=CA,又∵点P,Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,AB CAABQ CAP AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.。

(完整版)《全等三角形》单元测试题(含答案)

(完整版)《全等三角形》单元测试题(含答案)

《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。

2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。

3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。

4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。

(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。

6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。

(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上,AD ECB图4ABDE 图1 图2 图3图5图6DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分)17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FB18、如图14,AE 是∠BAC 的平分线,AB=AC 。

全等三角形单元测试卷(含答案)

全等三角形单元测试卷(含答案)

新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是()A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.8.(5分)如图,锐角△ABC和锐角△A′B′C′中,AD,A′D′分别是BC,B′C′上的高,且AB=A′B′,AD=A′D′.要使△ABC≌△A′B′C′,则应补充的条件是(填写一个即可).9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)参考答案与试题解析一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.【点评】本题考查全等三角形的知识.解题时要认准对应关系,如果把对应角搞错了,就会导致错选A或C.2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.【点评】本题主要考查全等三角形的定义,全等是指形状相同,大小相同,两个方面必须同时满足.4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm【分析】首先根据角平分线的性质可得CD=DE,然后证明Rt△ACD≌Rt△AED (HL),可得AE=AC,进而得到EB的长.【解答】解:∵AD是∠BAC的平分线,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6cm,∵AB=10cm,∴EB=4cm.故选:C.【点评】此题主要考查了全等三角形的判定与性质,以及角平分线的性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∴△EAC≌△FDB(SAS),故选:D.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是()A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=80°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB+∠DBC=40°+40°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.8.(5分)如图,锐角△ABC和锐角△A′B′C′中,AD,A′D′分别是BC,B′C′上的高,且AB=A′B′,AD=A′D′.要使△ABC≌△A′B′C′,则应补充的条件是CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′)答案不唯一(填写一个即可).【分析】根据判定方法,结合图形和已知条件,寻找添加条件.【解答】解:我们可以先利用HL判定△ABD≌△A′B′D′得出对应边相等,对应角相等.此时若添加CD=C´D´,可以利用SAS来判定其全等;添加∠C=∠C´,可以利用AAS判定其全等;还可添加AC=A′C′,∠CAD=∠C′A′D′等.故答案为CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′)答案不唯一.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= 120°.【分析】根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC+∠OCB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O是三个角的平分线的交点是解题的关键.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=27°.【分析】由BE垂直于AC,且AD=CD,利用线段垂直平分线定理得到AB=CB,即三角形ABC为等腰三角形,利用三线合一得到BE为角平分线,求出∠ABE度数,利用SAS得到三角形ABD与三角形CED全等,利用全等三角形对应角相等即可求出∠E的度数.【解答】解:∵BE⊥AC,AD=CD,∴AB=CB,即△ABC为等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°,故答案为:27【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)【分析】利用SAS判定三角形全等,得出对应边相等.【解答】证明:在△ABD和△ACD中,∴△ABD≌△ACD(SAS).∴BD=CD(全等三角形对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.【分析】根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.【解答】解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.。

(完整版)全等三角形练习题及答案

(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。

B、斜边和一锐角对应相等。

C、斜边和一条直角边对应相等。

D、两锐角相等。

2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案

八年级数学上册《全等三角形》单元测试含答案全等三角形单元测试一、单项选择题(共10 题;共 30 分)1.如图,已知AE=CF,∠ AFD=∠ CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A、∠ A=∠ CB、 AD=CBC、 BE='DF'D、 AD∥ BC2.如图, D 在AB 上, E 在AC 上,且∠B=∠ C,那么增补以下条件后,不可以判断△ABE≌△ ACD的是()A、 AD=AEB、 BE=CDC、∠ AEB=∠ADCD、 AB=AC3.以下图,△ABD≌△ CDB,下边四个结论中,不正确的选项是()A.△ ABD 和△ CDB的面积相等B.△ ABD 和△ CDB的周长相等C.∠ A+∠ ABD=∠ C+∠ CBD∥ BC,且AD=BC4.如图,在以下条件中,不可以证明△ABD≌△ ACD的是()A.BD=DC, AB=ACB.∠ ADB=∠ ADC, BD=DCC.∠ B=∠ C,∠ BAD=∠ CADD.∠ B=∠C, BD=DC5.已知图中的两个三角形全等,则∠ 1 等于()°° C.50 ° D.58 °6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,此中AD=CD,AB=CB,在研究筝形的性质时,获得以下结论:①△ABD≌△ CBD;② AC⊥ BD;③四边形ABCD的面积=12AC?BD,此中正确的结论有()A.0 个B.1 个C.2 个D.3 个7.如图,已知△ ABE≌△ ACD,∠ 1=∠ 2,∠ B=∠ C,不正确的等式是()A.AB=ACB.∠ BAE=∠ CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件中不可以判断△ABM≌△ CDN的是()A.∠ M=∠ NB.AM=CNC.AB=CDD.AM ∥ CN9.已知△ ABC≌△ DEF,∠ A=50°,∠ B=75°,则∠ F 的大小为()°° C.65 ° D.75 °10.如图,在△ ABC和△ DEF中,给出以下六个条件中,以此中三个作为已知条件,不可以判断△ABC和△ DEF 全等的是()①AB=DE ;② BC=EF;③ AC=DF;④∠ A=∠ D;⑤∠B=∠ E;⑥∠ C=∠ F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8 题;共 27 分)11.如图,△ ABC≌△ ADE,∠ B=100 °,∠ BAC= 30°,那么∠ AED= ________ °.12.以下图,已知△ABC≌△ ADE,∠ C=∠ E,AB=AD,则此外两组对应边为________,此外两组对应角为________.13.如图,△ ACE≌△ DBF,点 A、 B、C、 D 共线,若 AC=5, BC=2,则 CD的长度等于 ________.14.如图, AB=AD,只需增添一个条件________,就能够判断△ABC≌△ ADE.B=∠ C, BC=8厘米,点 D 为AB 的中点.假如点P 在线段BC 上以 2 厘米15.△ ABC中, AB=AC=12厘米,∠/ 秒的速度由 B 点向 C 点运动,同时,点Q 在线段CA 上由 C 点向A 点运动.若点Q 的运动速度为v 厘米 /秒,则当△ BPD 与△ CQP全等时, v 的值为 ________.16.如图,已知△ABC≌△ DCB,∠ BDC=35°,∠ DBC=50°,则∠ ABD=________.17.如图,△ ABC≌△ DEF,点 F 在 BC边上, AB 与 EF订交于点P.若∠ DEF=40°, PB=PF,则∠APF=________ .°18.如图,在△ ABC与△ ADC 中,已知 AD=AB,在不增添任何协助线的前提下,要使△ABC≌△ ADC,只需再增添的一个条件能够是________.三、解答题(共 5 题;共 37 分)19.如图,已知△ABC≌△ BAD, AC 与 BD 订交于点O,求证: OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应极点?对应边与对应角,并说出图中标的 a,b ,c, e,α各字母所表示的值.21.如图, AB=CB, BE=BF,∠ 1=∠ 2,证明:△ ABE≌△ CBF.22.已知命题:如图,点A, D, B, E 在同一条直线上,且AD=BE,∠ A=∠ FDE,则△ ABC≌△ DEF.判断这个命题是真命题仍是假命题,假如是真命题,请给出证明;假如是假命题,请增添一个适合条件使它成为真命题,并加以证明.23.如图,已知点 C 是线段 AB 上一点,直线AM⊥ AB,射线 CN⊥ AB, AC=3, CB=2.分别在直线AM 上取一点 D,在射线CN上取一点 E,使得△ ABD 与△ BDE全等,求2的CE值.四、综合题(共 1 题;共 10 分)24.定义:我们把三角形被一边中线分红的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图 1,在△ ABC中, CD是 AB 边上的中线.那么△ ACD和△ BCD是“朋友三角形”,而且 S△ACD=S△BCD.应用:如图 2,在直角梯形 ABCD中,∠ ABC=90°, AD∥ BC, AB=AD=4, BC=6,点 E 在 BC 上,点 F 在AD 上, BE=AF, AE 与 BF交于点 O.(1)求证:△ AOB 和△ AOF是“朋友三角形”;(2)连结 OD,若△ AOF 和△ DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ ABC中,∠ A=30°, AB=8,点 D 在线段 AB 上,连结 CD,△ ACD和△ BCD是“朋友三角形”,将△ ACD 沿 CD 所在直线翻折,获得△ A′CD,若△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,则△ ABC的面积是 ________(请直接写出答案).答案分析一、单项选择题1、【答案】 B【考点】全等三角形的判断【分析】【剖析】由 AE=CF可得 AF=CE,再有∠ AFD=∠ CEB,依据全等三角形的判断方法挨次剖析各选项即可 .【解答】∵ AE=CF∴AE+EF=CF+EF,即 AF=CE,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)∵BE=DF,∠ AFD=∠ CEB, AF=CE,∴△ ADF≌△ CBE(SAS)∵AD∥ BC,∴∠ A=∠ C,∵∠ A=∠ C, AF=CE,∠ AFD=∠ CEB,∴△ ADF≌△ CBE( ASA)故 A、 C、D 均能够判断△ ADF≌△ CBE,不切合题意B、 AF=CE, AD=CB,∠ AFD=∠ CEB没法判断△ ADF≌△ CBE,本选项切合题意.【评论】全等三角形的判断和性质是初中数学的要点,贯串于整个初中数学的学习,是中考取比较常有的知识点,一般难度不大,需娴熟掌握.2、【答案】 C【考点】全等三角形的判断【分析】【剖析】 A、依据 AAS(∠ A=∠ A,∠ C=∠B, AD=AE)能推出△ ABE≌△ ACD,正确,故本选项错误;B、依据 AAS(∠ A=∠ A,∠ B=∠ C, BE=CD)能推出△ ABE≌△ ACD,正确,故本选项错误;C、三角对应相等的两三角形不必定全等,错误,故本选项正确;D、依据 ASA(∠ A=∠ A, AB=AC,∠ B=∠ C)能推出△ ABE≌△ ACD,正确,故本选项错误;应选 C.3、【答案】 C【考点】全等三角形的性质【分析】【解答】解: A、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的面积相等,故本选项错误;B、∵△ ABD≌△ CDB,∴△ ABD 和△ CDB的周长相等,故本选项错误;C、∵△ ABD≌△ CDB,∴∠ A=∠ C,∠ ABD=∠ CDB,∴∠ A+∠ ABD=∠ C+∠ CDB≠∠ C+∠ CBD,故本选项正确;D、∵△ ABD≌△ CDB,∴AD=BC,∠ ADB=∠ CBD,∴AD∥BC,故本选项错误;应选 C.【剖析】依据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐一判断即可.4、【答案】 D【考点】全等三角形的判断【分析】【解答】解: A、∵在△ ABD 和△ ACD中∴△ ABD≌△ ACD( SSS),故本选项错误;B、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( SAS),故本选项错误;C、∵在△ ABD 和△ ACD 中∴△ ABD≌△ ACD( AAS),故本选项错误;D、不切合全等三角形的判断定理,不可以推出△ABD≌△ ACD,故本选项正确;应选 D.【剖析】全等三角形的判断定理有SAS, ASA,AAS, SSS,依据全等三角形的判断定理逐一判断即可.5、【答案】 D【考点】全等三角形的性质【分析】【解答】解:如图,由三角形内角和定理获得:∠2=180°﹣ 50°﹣72°=58°.∵图中的两个三角形全等,∴∠ 1=∠ 2=58°.应选: D.【剖析】依据三角形内角和定理求得∠2=58°;而后由全等三角形是性质获得∠1=∠ 2=58°.6、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABD 与△ CBD中,AD=CDAB=BCDB=DB ,∴△ ABD≌△ CBD( SSS),故①正确;∴∠ ADB=∠ CDB,在△ AOD 与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠ COD=90°,AO=OC,∴AC⊥ DB,故②正确;四边形 ABCD的面积 =S△ ADB+S△ BDC=12DB×OA+12DB×OC=12AC· BD故③正确;应选 D.【剖析】先证明△ABD 与△ CBD 全等,再证明△AOD 与△ COD 全等即可判断.7、【答案】 D【考点】全等三角形的性质【分析】【解答】解:∵△ABE≌△ ACD,∠ 1=∠ 2,∠B=∠ C,∴ AB=AC,∠ BAE=∠ CAD,BE=DC,AD=AE,故 A、 B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.【剖析】依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】 B【考点】全等三角形的判断【分析】【解答】解: A、∠ M= ∠ N,切合 ASA,能判断△ ABM≌△ CDN,故 A 选项不切合题意;B、根据条件 AM=CN, MB=ND,∠ MBA=∠ NDC,不可以判断△ ABM≌△ CDN,故 B 选项切合题意;C、 AB=CD,切合 SAS,能判断△ ABM≌△ CDN,故 C 选项不切合题意;D、 AM∥CN,得出∠ MAB=∠ NCD,切合 AAS,能判断△ ABM≌△ CDN,故 D 选项不切合题意.应选: B.【剖析】依据一般三角形全等的判断定理,有9、【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵∠A=50°,∠ B=75°,∴∠ C=55°,AAS、 SSS、 ASA、 SAS四种.逐条考证.又∵∠ A+∠ B+C=180°,∵△ ABC≌△ DEF,∴∠ F=∠ C,即:∠ F=55°.应选 B.【剖析】由∠A=50°,∠ B=75°,依据三角形的内角和定理求出∠全等三角形的性质获得∠F=∠ C,即可获得答案.C的度数,依据已知△ABC≌△ DEF,利用10、【答案】 D【考点】全等三角形的判断【分析】【解答】解:在△ABC 和△ DEF中,,∴△ ABC≌△ DEF( SAS);∴A 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( SSS);∴ B 不切合题意;在△ ABC和△ DEF中,,∴△ ABC≌△ DEF( AAS),∴C 不切合题意;在△ ABC和△ DEF中,D②③④不可以判断△ ABC和△ DEF全等,应选 D.【剖析】依据全等三角形的判断方法对组合进行判断即可.二、填空题11、【答案】 50【考点】全等三角形的性质【分析】【解答】由于∠B= 100°,∠ BAC= 30°因此∠ ACB= 50°;又由于△ ABC≌△ ADE,因此∠ ACB=∠AED = 50°;【剖析】第一依据全等三角形性质可得对应角相等,再联合图形找到全等三角形的那两个角对应相等,根据题意达成填空.12、【答案】 BC=DE、 AC=AE;∠ B=∠ ADE、∠ BAC=∠DAE 【考点】全等三角形的性质【分析】【解答】∵△ ABC≌△ ADE,∠ C=∠ E, AB=AD,∴AC=AE, BC=DE;∴∠ BAC=∠ DAE,∠ B=∠ ADE.【剖析】由已知△ ABC≌△ ADE,∠ C=∠ E, AB=AD 得 C 点与点 E,点 B 与点 D 为对应点,而后依据全等三角形的性质可得答案.13、【答案】 3【考点】全等三角形的性质【分析】【解答】解:∵△ACE≌△ DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣ 2=3.故答案为: 3.【剖析】依据全等三角形对应边相等可得AC=BD,而后依据 CD=BD﹣ BC计算即可得解.14、【答案】∠ B=∠ D【考点】全等三角形的判断【分析】【解答】解:增添条件∠B=∠ D,∵在△ ABC和△ ADE 中,∴△ ABC≌△ ADE( ASA),故答案为:∠B=∠D.【剖析】增添条件∠B=∠ D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ ABC≌△ ADE,答案不惟一.15、【答案】 2 或 3【考点】全等三角形的判断【分析】【解答】解:当BD=PC时,△ BPD 与△ CQP全等,∵点 D 为 AB 的中点,∴BD= 12 AB=6cm,∵ BD=PC,∴BP=8﹣ 6=2(cm),∵点 P 在线段 BC上以 2 厘米 / 秒的速度由 B 点向 C 点运动,∴运动时间时1s,∵△ DBP≌△ PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵ BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴ BP=4cm,∴运动时间为 4÷2=2( s),∴ v=6÷2=3( m/s ),故答案为: 2 或 3.【剖析】本题要分两种状况:①当BD=PC时,△ BPD 与△ CQP全等,计算出BP的长,从而可得运动时间,BDP≌△ QCP,计算出BP 的长,从而可得运动时间,而后再求v.而后再求v;②当BD=CQ时,△16、【答案】 45°【考点】全等三角形的性质【分析】【解答】解:∵∠ BDC=35°,∠ DBC=50°,∴∠ BCD=180°﹣∠ BDC﹣∠ DBC=180°﹣35°﹣50°=95°,∵△ ABC≌△ DCB,∴∠ ABC=∠ BCD=95°,∴∠ ABD=∠ ABC﹣∠ DBC=95°﹣50°=45°.故答案为: 45°.【剖析】依据三角形的内角和等于180°求出∠BCD,再依据全等三角形对应角相等可得∠ABC=∠ BCD,然后列式进行计算即可得解.17、【答案】 80【考点】全等三角形的性质【分析】【解答】解:∵△ ABC≌△ DEF,∴∠ B=∠DEF=40°,∵PB=PF,∴∠ PFB=∠ B=40°,∴∠ APF=∠ B+∠PFB=80°,故答案为: 80.【剖析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】 DC=BC或∠ DAC=∠BAC【考点】全等三角形的判断【分析】【解答】解:增添条件为DC=BC,在△ ABC和△ ADC中,,∴△ ABC≌△ ADC( SSS);若增添条件为∠DAC=∠ BAC,在△ ABC和△ ADC 中,,∴△ ABC≌△ ADC( SAS).故答案为: DC=BC或∠ DAC=∠BAC【剖析】增添 DC=BC,利用 SSS即可获得两三角形全等;增添∠ DAC=∠ BAC,利用 SAS即可获得两三角形全等.三、解答题19、【答案】证明:∵△ ABC≌△ BAD,∴∠ CAB=∠ DBA, AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即: OC=OD.【考点】全等三角形的性质【分析】【剖析】由△ ABC≌△ BAD,依据全等三角形的性质得出∠CAB=∠ DBA, AC=BD,利用等角平等边获得 OA=OB,那么 AC﹣ OA=BD﹣OB,即: OC=OD.20、【答案】解:对应极点: A 和 G, E 和 F,D 和 J,C 和 I, B 和 H,对应边: AB 和 GH,AE 和 GF, ED 和 FJ, CD 和 JI,BC 和 HI;对应角:∠ A 和∠ G,∠ B 和∠ H,∠ C 和∠ I,∠ D 和∠ J,∠ E和∠ F;∵两个五边形全等,∴a=12,c=8, b=10, e=11,α=90°.【考点】全等图形【分析】【剖析】依据能够完整重合的两个图形叫做全等形,重合的极点叫做对应极点;重合的边叫做对应边;重合的角叫做对应角可得对应极点,对应边与对应角,从而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠ 1=∠ 2,∴∠ 1+∠ FBE=∠ 2+∠ FBE,即∠ ABE=∠ CBF,在△ ABE与△ CBF中,AB=CB∠ ABE=∠ CBFBE=BF,∴△ ABE≌△ CBF( SAS).【考点】全等三角形的判断【分析】【剖析】利用∠1=∠ 2,即可得出∠ABE=∠ CBF,再利用全等三角形的判断SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①增添条件:AC=DF.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,AB=DE,∠A=∠ FDE,AC=DF,∴△ ABC≌△ DEF( SAS);②增添条件:∠CBA=∠ E.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ABC和△DEF中,∠ A=∠ FDE,AB=DE,∠CBA=∠ E,∴△ ABC≌△ DEF( ASA);③增添条件:∠C=∠ F.证明:∵ AD=BE,∴AD+BD=BE+BD,即 AB=DE.在△ ABC和△ DEF中,∠ A=∠ FDE,∠ C=∠F,AB=DE,∴△ ABC≌△ DEF( AAS)【考点】全等三角形的判断【分析】【剖析】本题中要证△ABC≌△ DEF,已知的条件有一组对应边AB=DE( AD=BE),一组对应角∠ASA),或许是一组A=∠FDE.要想证得全等,依据全等三角形的判断,缺乏的条件是一组对应角( AAS或对应边AC=EF( SAS).只需有这两种状况就能证得三角形全等.23、【答案】解:如图,当△ ABD≌△ EBD时,BE=AB=5,∴CE2=BE2﹣ BC2=25﹣ 4=21.【考点】全等三角形的判断【分析】【剖析】由题意可知只好是△ABD≌△ EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】( 1)证明:∵ AD∥ BC,∴∠ OAF=∠ OEB,在△ AOF 和△ EOB 中,,∴△ AOF≌△ EOB( AAS),∴OF=OB,则 AO 是△ ABF 的中线.∴△ AOB 和△ AOF是“朋友三角形”(2) 8 或 8【考点】全等三角形的判断【分析】【解答】( 2)解:∵△ AOF 和△ DOF 是“朋友三角形”,∴S△AOF=S△DOF,∵△ AOF≌△ EOB,∴S△AOB=S△EOB,∵△ AOB 和△ AOF是“朋友三角形”∴S△AOB=S△AOF,=S =S =S, =× 4× 2=4,∴ S△AOF△DOF△AOB△EOB∴四边形CDOE 的面积 =S 梯形ABCD﹣ 2S△ABE=×(4+6)×4﹣2× 4=12;拓展:解:分为两种状况:①如图 1 所示:∵S△ACD=S△BCD.∴AD=BD= AB=4,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC面积的,=S =S =S =S,∴ S△DOC△ ABC△ BDC△ ADC△ A′DC∴ DO=OB, A′O=CO,∴四边形 A′DCB是平行四边形,∴ BC=A′D=4,过 B 作 BM⊥ AC 于 M,∵ AB=8,∠ BAC=30°,∴ BM=AB=4=BC,即 C 和 M 重合,∴∠ ACB=90°,由勾股定理得:AC==4,∴△ ABC的面积 =×BC×AC= ×4×4=8;②如图 2 所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿 CD 折叠 A 和 A′重合,∴AD=A′D= AB= ×8=4,∵△ A′CD与△ ABC重合部分的面积等于△ABC 面积的,∴ S△DOC=△△△△ ′S ABC=S BDC=S ADC=S A DC,∴DO=OA′, BO=CO,∴四边形 A′BDC是平行四边形,∴A′C=BD=4,过 C 作 CQ⊥ A′D于 Q,∵A′C=4,∠ DA′C=∠BAC=30°,∴ CQ= A′C=2,=2S=2S=2×× A′ D× CQ=2× 4 × 2=8;∴ S△ABC△ADC△ A′DC即△ ABC的面积是8 或 8;故答案为:8 或 8.【剖析】应用:(1)由 AAS 证明△ AOF≌△ EOB,得出 OF=OB, AO 是△ ABF的中线,即可得出结论;( 2)△ AOE和△ DOE 是“友善三角形”,即可获得 E 是 AD 的中点,则能够求得△ ABE和梯形 ABCD的面积的面积,依据 S 四边形CDOF=S矩形ABCD﹣ 2S△ABF即可求解.拓展:画出切合条件的两种状况:①求出四边形A′DCB是平行四边形,求出BC和 A′D推出∠ ACB=90°,依据三角形面积公式求出即可;②求出高CQ,求出△ A′DC的面积.即可求出△ABC的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形单元练习题及答案
八年级数学第十一章《全等三角形》单元练习
班级: 学号: 姓名:
一、选择题:(每题3分,共30分) 1、如图1,若ABC ∆≌DEF ∆,则)(
=∠E
A 、︒30
B 、︒62
C 、︒92
D 、︒88
2、如图2,△ABC ≌△DCB ,A 、B 的对应顶点分别为点D 、C ,假如AB =7cm ,BC =12cm ,AC =9cm ,那么BD 的长是( )。

A 、7cm
B 、9cm
C 、12cm
D 、无法确定
3、如图3,线段AC 与BD 交于点O ,且OA=OC ,请添加一
个条件,使OAB ∆≌OCD ∆,那个条件不能够是( ) A 、CD AB = B 、OD OB = C 、C A ∠=∠ D 、D B ∠=∠
4、如图4,点P 是BAC ∠内一点,PF PE AC PF AB PE =⊥⊥,,,则PEA ∆≌ PFA ∆ 的理由是( )
A 、HL
B 、ASA
C 、AAS
D 、SAS
5、如图5,∠1=∠2,PD ⊥OA 于D ,PE ⊥OB 于E ,垂足分别为D 、E ,下列结论错误的是( )
A 、PD=PE
B 、OD=OE
C 、∠DPO=∠EPO
D 、PD=OD
6、图6中全等的三角形是( ) A 、Ⅰ和Ⅱ B 、Ⅱ和Ⅳ C 、Ⅱ和Ⅲ D 、Ⅰ和Ⅲ
图5
F
E
D
C
B
A
30°
62°
图1
C
A
B
O
D
图3
P
B C
F
E
A
图4
5cm
5cm
9cm
9cm
8cm
8cm
8cm
ⅣⅢ Ⅱ
Ⅰ30︒
30︒
30︒
图6
图2
7、如图7,∠B=∠D , ∠1=∠2,则ABC ∆≌ADC ∆ 的理由是( )
A 、AAS
B 、HL
C 、ASA
D 、SAS
8、如图8,AC 与BD 相交于点E ,EC AE ED BE ==,, 则ABE ∆≌CDE ∆的理由是( ) A 、ASA B 、SAS C 、AAS D 、SSS
9、如图9,如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )
A 、带①去
B 、带②去
C 、带③去
D 、带①和②去
10、如图10,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,∠1=∠2,图中全等三角形共有( ) A 、1对 B 、2对 C 、3对 D 、4对
二、填空题:(每题3分,共15分)
11、如图11,AB=AC ,要证△ABD ≌△ACD 还需添加的一个条件能够是: (填出一种即可)。

12、如图12,在△ABC 和△DEF 中,假如AB=DE ,AC=DF ,只要再具备条件 ,就能够证明△ABC ≌△DEF 。

13、 如图13,AB=AC ,BD=DC ,若︒=∠28B ,则=∠C .
14、如图14,长方形ABCD 沿AE 折叠,使点D 落在BC.边上的F 点处,假如∠BAF= 60°,则∠DAE= 。

A
B
C
D
图13
A
D
C
B
图11
A B
C
D F E
图14
B F
A
D
C E 图12
图9
12
O
A
B
C
D E
图10
图8
D
C
B
A
12
图7
15、如图15,在Rt⊿ABC中,∠C=90°,AC=BC,AD是∠BAC 的平分线,DE⊥AB,垂足为E,若AB=10㎝,则⊿DBE的周
长为㎝。

三、解答题:(共55分)
1、(8分)如图:已知AB与CD相交于O,∠C=∠B,CO=BO,试说明△AOC与△DOB全等。

2、(8分)如图:△ABC和△DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,AC和DB相交于点O,求证:∠A=∠D
3、(9分)如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB
O
B C
A D
B
A
D
E
图15
F
E
D
C
B
A
4、(10分)如图,已知△ABC 中,∠ACB=90°,BD 平分∠ABC ,D E ⊥AB ,ED 的延长线交BC 的延长线于F ,求证:AE=CF
5、(10分)如图、在B 、C 、E 、F 在同一直线上,DE AB //,DF AC //,CE BF = 求证:DE AB =
6、(10分)如图,∠BAC=90°,AB=AC ,D 在AC 上,E 在BA 的延长线上,BD=CE ,BD 延长线交CE 于F ,求证:BF ⊥CE 。

[注明:图中标注的∠1、∠2能不能给你启发呢?]
B F
C
B
C
答案:
一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 D B A A D D A B C D
二、填空:
题号 11
12 13 14 15 答案
CD=DB 或 ∠CAD=∠BAD
BC=EF 或BE=CF 或 ∠A=∠D
28°
15°
10㎝
三、1、证明:在△AOC 与△DOB 中:
AOB DOC CO BO
C B ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴△AO C ≌△DOB (ASA )
2、证明:在△ABC 和△DBC 中:
AB DC AC DB BC CB =⎧⎪
=⎨⎪=⎩
∴△AB C ≌△DCB (SSS )
3、证明:∵∠1=∠2
∴∠1+∠ACE=∠2+∠ACE
∴∠ACB=∠DCE 在△ABC 和△DBC 中:
ACB= DCE AC DC EC BC =⎧⎪
∠∠⎨⎪=⎩
∴△AB C ≌△DCB (SAS )
4、证明:∵BD 平分∠ABC ,D E ⊥AB ,∠ACB=90°
∴DE=DC ,∠AED =∠FCD=90° 在Rt △AED 和Rt △FCD 中,
AED = FCD DE=DC
AED = FCD ∠∠⎧⎪
⎨⎪∠∠⎩
∴△AE D ≌△FCD (ASA )
5、证明:∵DE AB //
∴∠B=∠E
∵//AC DF
∴∠1=∠2 ∴∠3=∠4
∵BF CE =
∴BF-CF=CE-CF ∴BC=EF
在△ABC 和△DBC 中:
B= E BC=F 1= 2∠∠⎧⎪
⎨⎪∠∠⎩
∴△AB C ≌△DCB (SAS )
∴DE AB =
6、证明:∵∠BAC=90°
∴∠EAC =∠BAD=90° 在Rt △AED 和Rt △FCD 中,
BD=CE
AB=AC ⎧⎨

∴Rt △AE D ≌Rt △FCD (HL ) ∴∠1=∠2
∵∠1+∠ADB=90°
∠FDC=∠ADB
∴∠2+∠FDC =90° ∴∠DFC =90° ∴BF ⊥CE
1
2
D
B
C
A
F。

相关文档
最新文档