霍尔效应

合集下载

霍尔效应高考知识点总结

霍尔效应高考知识点总结

霍尔效应高考知识点总结霍尔效应是近几年高考中的一个重要知识点,涉及到电磁感应和导电材料的相关原理和应用。

本文将对霍尔效应进行总结和归纳,帮助学生更好地理解和掌握这一知识点。

1. 霍尔效应的基本原理霍尔效应是指当导电材料中有电流通过时,垂直于电流方向的方向上会产生一定的电势差。

这种现象是由磁场对电子的偏转效应引起的。

当电子在导体中运动时,磁场施加的力使得电子受到侧向偏转,导致电子在一个方向上聚集,产生电势差。

2. 霍尔效应的公式和参数霍尔效应可以通过一个简单的公式来描述:VH = B × I × RH。

其中VH表示霍尔电压,B表示磁场的强度,I表示电流的大小,RH表示霍尔系数。

霍尔系数是一个与导体特性相关的参数,通过测量霍尔电压和磁场以及电流的值可以计算出来。

3. 霍尔效应的应用霍尔效应在实际中有着广泛的应用。

其中最常见的是磁场传感器的应用。

磁场传感器通过测量霍尔电压的变化来检测磁场的强度和方向。

这种传感器在自动控制、磁力计、电流测量等领域都得到了广泛的应用。

4. 良导体和劣导体中的霍尔效应差异在不同的导体中,霍尔效应呈现出不同的特点。

在良导体中,电子的运动能力较强,电流通过后霍尔电压较大;而在劣导体中,电子的运动能力较差,电流通过后霍尔电压较小。

这是因为良导体中自由电子的浓度较高,受到磁场作用后偏转偏大;而劣导体中自由电子的浓度较低,受到磁场作用后偏转偏小。

5. 霍尔效应的探究与实验学生在学习和掌握霍尔效应时,可以通过一些简单的实验来加深理解。

例如,可以利用霍尔效应进行磁场的测量,通过改变电流大小和磁场强度,观察霍尔电压的变化规律。

还可以探究不同材料的导电性质对霍尔效应的影响,比较不同材料产生的霍尔电压的差异。

6. 霍尔效应在电子设备中的应用霍尔效应在电子设备中有着广泛的应用。

例如,在手机和平板电脑里的磁场传感器,可以通过测量霍尔电压的变化来检测屏幕是否翻盖。

在电动车和电磁炉中,也用到了霍尔效应来检测电流的大小和方向,对设备的安全性和控制起到了重要作用。

霍尔效应

霍尔效应

霍尔效应[1]是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。

当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。

这个电势差也被叫做霍尔电势差。

霍尔效应的原理导体中的电荷在电场作用下沿电流方向运动,由于存在垂直于电流方向的磁场,电荷受到洛伦兹力,产生偏转,偏转的方向垂直于电流方向和磁场方向,而且正电荷和负电荷偏转的方向相反,这样就产生了电势差。

补充上面的人:正电荷与负电荷偏转的方向是相同的,只是因为导体中导电的是电子,所以只有电子偏转,才会有在两面有电压。

在半导体中,有两种载流子(空穴与自由电子),而它们的偏转方向是相同的,产生的电压也只是多数载流子与少数载流子之差,即表现了多数载流子的效果。

正是因为这样,所以才能利用霍尔效应来判断N、P型半导体。

上面作补充这位:正负电荷的偏转方向是相同的,你从哪里听说的呢?另外,导体能够导电,是导体中的电子在外电场作用下作定向运动的结果,但一般并不会说来固体导电就是全靠电子,因为在原子的能带结构里面,在价带中(导体的价带是半满带)电子可以在外电场的作用下作定向运动,而因为导体的价带中电子是半满的,所以才不分少子和多子,也就是大家习惯说的“导体中导电的是电子”。

但是对于半导体甚至绝缘体,在价带是满带,也就是全被电子所占据,在一定的条件先,价带中的电子跃迁到导带中,成为自由电子,而在价带中留下一些“空洞”,这些“空洞”我们习惯成“空穴”(也就是大家平常说的“正电子”,它带正电),但实质上,是没有空穴这种东西的,只不过是在半导体中,为了简单化的描述它的一些特性或原理,大家喜欢用数量小的东西去描述,以简单化,才出来“空穴”这个东西。

但话说回来,如果从最最本质的导电原理来说,确实导电都是电子做定向运动的结果,但我们一般不会这么说。

但是你说两种载流子的偏转方向相同,这肯定不对,他们一个带正电,一个负电,受到的力的作用刚好相反。

什么是霍尔效应

什么是霍尔效应

什么是霍尔效应什么是霍尔效应?它通常是指电子在受到磁场作用时,内部的电子密度随磁场增加的现象。

这种效应叫磁场效应。

简单的说,就是磁场效应使电子密度改变时,电子具有不均匀分布的特性,会出现这种现象叫做霍尔效应。

1、电磁感应磁场对电子产生作用时会产生电子感应现象,它在磁场中作用时,电子可产生各种不同的电磁感应现象。

其中很重要的一种,就是人们常说到的电磁感应现象。

根据电磁学中描述电磁感应现象的电磁感应定律,其基本单位为欧姆)。

当电流通过某种物体时,可产生感应电流。

这就是电磁感应现象。

在某些电子系统中,若利用磁场产生交变电流,这一交变电流可以改变其磁场,将影响磁场的方向或强度。

因此当磁场强度变大时,感应强度变化幅度也就越大,这种现象称为“磁效应”。

2、电磁场与磁场相互作用电荷的质量与大小不会随磁场大小变化。

电磁场强度有关,可以用TS表示。

当发生在电子设备中时,会使磁场方向发生变化。

通常认为是由磁场引起的,也可以认为是磁致伸缩。

.由于电流通过磁化轨道,使磁化方向发生了变化。

所以电磁场间的相互作用和电磁场与电子之间相互作用是相互影响的。

由于电荷在分子间作用力可以把电荷从原子转移到自由电子上而不会使电子变得不能再存在,这就是人们常说到的电流效应和霍尔效应。

3、霍尔效应对电磁系统的影响对于电磁系统,霍尔效应的作用是十分明显的。

当磁场作用于绝缘体上时,随着磁场的增大,绝缘体上电子密度也随之增加。

当外加电压大于导体电流密度和电阻率时,电子就会沿着这个路径移动直至到达导体的边缘。

在感应电路中电子随磁场移动也是一个常见特征,而且这种现象可分为以下几种情况:(1)电磁感应定律与霍尔效应都是在导体中发生。

当一个导体受到外力时电荷会产生相互作用,而引起电荷传递反应的电流则可以沿着被施加磁性物体的磁道方向通过。

4、霍尔效应现象的解释因为电子和质子之间没有运动,所以电子的轨道在磁场中运动的方向是不受磁场控制的。

当磁场比较强或者比较弱时(特别是电子),它会导致周围离子发生电离,这时电子的轨道不在一个固定的区域内了。

半导体物理基础霍尔效应

半导体物理基础霍尔效应

离子注入造成的杂质浓度分布曲线一般如下:
浓 度
深度
深度
特点:①杂质浓度最高处位于体内; ②在注入后一般要采取加热圆片(退火)的方法, 来消除损伤和激活注入杂质
离子注入工艺示意图:
衬底
生长外延层 制作掩膜 刻蚀 离子注入掺杂
【实验】
磁场对运动电荷有力的作用——这个力叫洛仑兹力。
【推理与猜想】 磁场对电流有安培力的作用,而电流是由电荷定向运动
扩散工艺所得杂质分布总是表面浓度高、体内浓度低,而 且对扩散系数太低的杂质难于得到要求的杂质浓度。离子 注入工艺可以很好的解决以上问题。
离子注入工艺原理:
在真空中,由高压使杂质离子加速,射向硅表面,加速后 的离子动能很高,能够进入硅中实现掺杂。
离子注入工艺掺杂后其杂质分布特点:
在离开表面一定距离处杂质浓度最高,在其附近呈高斯分 布。如下页图:
• 扩散的方法(扩散工艺)
• 离子注入法
扩 散 工 艺
在物理中我们学过,由于分子热运动和浓度差,在气体、 液体和固体中,都会产生扩散现象。扩散现象在气体和液 体中尤其明显。
那么在硅片中进行掺杂的原理和上面基本一样,可以简单 的画图描述一下,见黑板
扩散工艺造成的杂质浓度分布曲线一般如下:
浓 度 体浓度
形成的。所以磁场对电流的安培力可能是磁场对运动电荷的
作用力的宏观表现。即: 1.安培力是洛伦兹力的宏观表现.
2.洛伦兹力是安培力的微观本质。
一.洛伦兹力的方向
洛伦兹力的方向符合左手定则: ——伸开左手,使大拇指跟其余四指垂直,且处于同一平 面内,把手放入磁场中,磁感线垂直穿过手心,四指指向 正电荷运动的方向(即电流方向),那么,拇指所指的方向 就是正电荷所受洛伦兹力的方向. 若是负电荷运动的方向,那么四指应指向其反方向。

霍尔效应(Hall Effect)

霍尔效应(Hall Effect)
当受测材料为P型半导体(主要载子电洞)
8
外加一磁场沿正y轴
在动并A1受,正A2Z间方加向一磁电场位作差用使力电F洞B 以q漂v流速B 度沿正x方向运
因材料原呈电中性,故有相等之负电荷累积在材料下 方并产生负Z方向静电力Fe=qE
稳定态时,FB=FE 即 qvB=qE
E=vB
此时上下两侧之电压差即为霍尔电压
归零
使用按钮上方英文字
所提示功能时,须先 按住SHIFT键才可使 用。
选取单位
数值撷取
范围设定
11
实验仪器
探针置入位置

厚 压 克 力 垫
磁 场 测 试 板
探 针
试 板 放 置 处









材料12如 Nhomakorabea量测磁场
先将高斯计执行 归零程序。
依操作说明找出磁 鐵N、S极。
量测示意图
将实验器材架设好,
14
9
计算
J nev I I A ab
v B E VH b
n IB aeVH
n : 載子濃度 e : 電荷電量 v: 漂移速度 J : 電流密度 B : 外加磁場 VH : 霍爾電壓 a : 樣品厚度(y方向) b : 樣品高度(z方向) A : 電流通過之樣品截面積
10
实验仪器-----高斯计(量测磁场使用 )
多数载子为电洞,少数载子为电子。
三价杂质通常为硼(B) 、鋁(Al)、鎵(Ga)、 銦(In)。
6
N型半导体
在纯硅中加入五价元素杂質,使每个硅原子与五价 杂质结合成共价键时多一电子,即为N型半导体。
多数载子为电子,少数载子为电洞。 五价杂质通常为磷(P)、

名词解释霍尔效应

名词解释霍尔效应

名词解释霍尔效应
霍尔效应(霍尔效应)是一种量子效应,涉及到电子在磁场中的运动。

当电子在磁场中受到一个电场的作用时,它们会受到洛伦兹力,从而改变它们的运动状态。

这种改变可以导致电子的霍尔系数(霍尔系数)发生变化,从而指示电子在磁场中的运动方向和速度。

霍尔效应最初被发现是在20世纪50年代。

当时,研究人员发现,如果将一个霍尔传感器放置在一个磁场中,它可以通过检测电子的霍尔系数来测量磁场强度。

这种技术被广泛应用于各种电子设备中,例如磁共振成像设备、硬盘驱动器和传感器等。

霍尔效应的应用范围非常广泛,但它也有一些限制。

例如,在强磁场中,霍尔传感器可能会受到损坏。

此外,霍尔系数也受到温度和湿度等因素的影响,因此需要对它们进行校准。

除了用于测量磁场外,霍尔效应还可以用于控制电流。

例如,可以使用霍尔传感器来检测电流的方向,从而控制电路中的电流。

霍尔效应技术还被应用于许多其他领域,例如量子计算、量子存储和量子通信等。

霍尔效应是一个非常重要的量子效应,它的应用将推动计算机科学和技术的发展。

随着技术的不断发展,霍尔效应的应用前景将越来越广阔。

霍尔效应

霍尔效应

霍尔效应的本质是:固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。

正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。

平行电场和电流强度之比就是电阻率。

大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。

霍尔效应在应用技术中特别重要。

霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。

好比一条路, 本来大家是均匀的分布在路面上, 往前移动. 当有磁场时, 大家可能会被推到靠路的右边行走. 故路(导体) 的两侧, 就会产生电压差. 这个就叫“霍尔效应”。

根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。

讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。

例如汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。

这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。

相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。

用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。

许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。

霍尔效应

霍尔效应

霍尔效应一、简介霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。

后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

流体中的霍尔效应是研究“磁流体发电”的理论基础。

二、理论知识1. 1. 霍尔效应将一块半导体或导体材料,沿Z 方向加以磁场B,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。

H V 称为霍尔电压。

(a) (b)图1 霍尔效应原理图实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即d IB R V HH =(1)或 IB K V H H =(2)式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。

产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。

如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为j eVB B V e B V q F m -=⨯-=⨯=(3)式中V为电子的漂移运动速度,其方向沿X 轴的负方向。

e 为电子的电荷量。

m F 指向Y轴的负方向。

自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场H E (即霍尔电场),使运动电子受到一个沿Y 轴正方向的电场力e F,A 、B 面之间的电位差为H V (即霍尔电压),则 jb V e j eE E e E q F H H H H e ==-==(4)将阻碍电荷的积聚,最后达稳定状态时有0=+e m F F=+-j b V e j eVB H即b V eeVB H= 得 VBb V H =(5)此时B 端电位高于A 端电位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍尔效应概述霍尔效应Hall Effect是一种磁电效应,是德国物理学家霍尔1879年研究载流导体在磁场中受力的性质时发现的。

根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

通过该实验可以了解霍尔效应的物理原理以及把物理原理应用到测量技术中的基本过程。

当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应,该电势差称为霍尔电势差(霍尔电压)。

霍尔效应原理所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。

金属的霍尔效应是1879年被美国物理学家霍尔发现的。

当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。

半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。

利用霍尔效应可以设计制成多种传感器。

霍尔电位差UH的基本关系为UH=RHIB/d(18)RH=1/nq(金属)(19)式中RH——霍尔系数:n——载流子浓度或自由电子浓度;q——电子电量;I——通过的电流;B——垂直于I的磁感应强度;d——导体的厚度。

对于半导体和铁磁金属,霍尔系数表达式与式(19)不同,此处从略。

由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。

利用这一原理可以设计制成霍尔电流传感器。

其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。

若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差与电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。

利用这种方法可以构成霍尔功率传感器。

如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。

根据脉冲信号列可以传感出该运动物体的位移。

若测出单位时间内发出的脉冲数,则可以确定其运动速度。

霍尔效应在应用技术中特别重要。

霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。

好比一条路,本来大家是均匀的分布在路面上,往前移动.当有磁场时,大家可能会被推到靠路的右边行走.故路(导体)的两侧,就会产生电压差.这个就叫“霍尔效应”。

方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。

电流经过ad,电流I = nqv(ad),n为电荷密度。

设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。

设磁场强度为B。

qVH / a = qvBVH / a = BI / (nqad)VH = BI / (nqd)霍尔效应的应用根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。

讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。

例如:汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。

这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。

相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。

用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。

许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。

而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。

采用功率霍尔开关电路可以减小这些现象。

霍尔器件通过检测磁场变化,转变为电信号输出,可用于监视和测量汽车各部件运行参数的变化。

例如位置、位移、角度、角速度、转速等等,并可将这些变量进行二次变换;可测量压力、质量、液位、流速、流量等。

霍尔器件输出量直接与电控单元接口,可实现自动检测。

目前的霍尔器件都可承受一定的振动,可在零下40摄氏度到零上150摄氏度范围内工作,全部密封不受水油污染,完全能够适应汽车的恶劣工作环境。

霍尔效应的定义定义1:霍尔效应是指当施加的外磁场垂直于半导体中流过的电流时,会在半导体垂直于磁场和电流的方向上产生霍尔电动势源自:高速磁浮列车磁场测量系统的设计《仪表技术与传感器》2004年田武刚,潘孟春,罗飞路,陈棣湘来源文章摘要:高速磁浮列车磁场主要分布在列车和轨道之间很小的空气隙中,气隙磁场是一个恒定磁场和交变磁场的叠加磁场,而且磁感应强度很大,最大可达12T.针对高速磁浮列车磁场分布的特殊性,设计了一套两自由度磁场的闭环自动化测量系统。

系统的设计基于PC机,可以实现对列车磁场中的固定点和一段距离上的磁场大小的自动化测量,并将测量数据存入数据库以便于进一步处理分析。

在列车实验平台磁场的实际测量中,该系统性能稳定,测量范围可达0~15T.定义2:种现象即称为霍尔效应.UH称为霍尔电势其大小可表示为:图回霍尔效应原理图式中RH称为霍尔系数由半导体材料的性质决定源自:霍尔传感器在电参量测量中的应用《中国民航学院学报》1999年刘建英来源文章摘要:介绍了霍尔传感器在测量交流电参量中的应用,着重分析了采用单片机及霍尔元件测量电功率的几种方法及其优缺点,并提出了本文采用的方法。

定义3:这个现象称为霍尔效应,所产生的电压差ΔU称为霍尔电压差(也称霍尔电压).由经典电子理论可以解释霍尔电压产生的原因源自:霍尔效应测量大电流的理论探讨《中国测试技术》2005年袁国胜,刘浙华来源文章摘要:大电流、大电压的测量一直是困扰工程测量学的难题。

本文着重探讨了霍尔效应应用于测量大电流的工作原理、数学推算以及应用中需要注意的几个问题。

力图寻求将新技术用于工程测量中难点问题的理论依据定义4:一现象称为霍尔效应.产生前电动势称为霍尔电势半导体薄片称为霍尔元件.2.2感应式相序测定仪的工作原理在IOKV线路中B相置于三相线路中间所以只要确定左右两线路的相位即可测定相序源自:感应式10KV线路相序测定仪《自动化博览》1999年周洪,李崇晟,贺剑锋来源文章摘要:基于霍尔效应,采用霍尔元件集成电路将高压线路相序的测定工作简单化,使相序测定工作安全、准确,为大范围的配电网技术改造工作提供了得力的工具。

定义5:其电流I的疗向与磁场H的方向之间有夹角a时,则在载流体中平行丁H、I的两侧面之间将产生电动势,这种物理现象称为霍尔效应源自:桑塔纳2000型轿车专用霍尔传感器及其...《上海汽车》1998年喻德海来源文章摘要:本文介绍了桑塔纳2000型轿车专用霍尔传感器的结构及工作原理。

定义6:1引言美国物理学家霍尔于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间出现了电势差,这一现象称为霍尔效应源自:不等位电势差《甘肃科技》2004年周珺来源文章摘要:只要不等位电势差不为零,则测量值就会出现“台阶”,而不等位电势差大于霍尔电压是发生负号突变的根源定义7:2霍尔元件在磁场中垂直放置一块通有电流的金属或半导体薄片薄片的两侧之间就会产生电动势这种现象称为霍尔效应.霍尔元件是在霍尔效应原理基础上制成的源自:霍尔传感器及其应用《中国煤炭》1995年萧光岐来源文章摘要:霍尔传感器是一种性能优良的磁敏传感器,在煤炭科研和技术革新中有着广泛的应用前景。

文章简述了霍尔元件和霍尔集成电路及工作原理,并通过几个应用实例介绍了霍尔传感器在煤炭工业中的应用情况。

定义8:此现象称为霍尔效应,此电位差称为霍尔电势,图1a表示出霍尔效应原理:在三维空间内,导电板在XOY 平面内,它与磁场方向垂直,磁场指向Y轴的方向,沿X轴方向通以电流j,由于运动的电荷与磁场的栩互作用源自:国内外霍尔线性传感器性能及应用《现代车用动力》1997年张礼林来源文章摘要:1概述随着汽车电子控制技术的发展,霍尔传感器被大量用于测量转速、转角、角位移、线位移等,其中测转速用的是霍尔开关传感器,其余为霍尔线性传感器。

用于测油嘴针阀升程的霍尔传感器与以前采用的电感式传感器相比,具有结构简单、体积小、安装方便等优点。

我所于1984年购进两只进口霍尔线性传感器,一直成功地使用至今。

定义9:此现象称为霍尔效应.设KH为霍尔灵敏度,I为电流强度,B为磁场的磁感应强度,θ为磁感应强度B和霍尔元件平面法线间的夹角源自:基于霍尔效应的铁磁性磨粒测试方法《煤矿机械》2004年马怀祥来源文章摘要:为检测润滑油中铁磁性磨粒的含量,根据霍尔效应原理和高梯度磁力分离技术原理设计了铁磁性磨粒检测仪。

设计确定了合适的霍尔传感器及后续处理电路。

结果表明:利用它能很方便地对机械润滑油中的铁磁性磨粒捕获、测量和分析,为机械状态监测和故障诊断提供了一种方法。

介绍了其工作原理、基本结构、电路系统及元件选用。

定义10:这种物理现象被人们称为霍尔效应.由于金属中自由电子浓度很大,它的霍尔效应十分微弱,所以,当时没有引起人们的重视源自:霍尔传感器在小型内燃机电控系统中的应用《小型内燃机与摩托车》2001年穆卫强,孙成军,周大森来源文章摘要:本文介绍了霍尔传感器的原理及其目前在汽车发动机上的一些应用,并对其在摩托车发动机上作为油门位置传感器进行了实验研究通过霍尔效应测量磁场在磁场中的载流导体上出现横向电势差的现象是24岁的研究生霍尔(Edwin H. Hall)在1879年发现的,现在称之为霍尔效应。

随着半导体物理学的迅猛发展,霍尔系数和电导率的测量已经称为研究半导体材料的主要方法之一。

通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

若能测得霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。

在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing)等研究半导体在极低温度和强磁场中发现了量子霍尔效应,它不仅可作为一种新型电阻标准,还可以改进一些基本产量的精确测定,是当代凝聚态物理学和磁学令人惊异的进展之一,克利青为此发现获得1985年诺贝尔物理学奖。

相关文档
最新文档