条件概率的乘法公式

合集下载

第四节 条件概率总结

第四节  条件概率总结

第四节一、条件概率 二、乘法公式条件概率三、全概率公式与贝叶斯公式一、条件概率在许多问题中,我们往往会遇到事件 B 已经出 现的条件下求事件A的概率. 这时由于有了附加条 件, 因此称这种概率为事件B发生的条件下,事件 A的条件概率,记作 P(A|B) 同理P(B|A)表示:事件A发生的条件下,事件 B发生的概率例1 一个家庭中有两个小孩,已知两个小孩其中一个 是女孩,问两个小孩都是女孩的概率是多少? (假定生男生女是等可能的) 解 由题意,样本空间为Ω = { (男,男), (男,女), (女,男), (女,女) }A 表示事件“至少有一个是女孩”, B 表示事件“两个都是女孩”,则有 A={ (男,女), (女,男), (女,女) } B = { (女,女) } 由于事件A已经发生,所以这时试验的所有可能结果 只有三种,而事件B包含的基本事件只占其中的一 1 种, 所以有 P ( B A) =3(1)在这个例子中,若不知道事件A已经发生的信息,那 么事件B 发生的概率为 这里1 P( B) = 4 P( B)≠ P( B A)其原因在于事件 A的发生改变了样本空间,使它由原 来的Ω 缩减为Ω A = A,而 P( B A)是在新的样本空间 Ω A 中由古典概率的计算公式而得到的.上例中计算 P(B|A)的方法并不普遍适用.如果回 到原来的样本空间Ω 中考虑,显然有3 P( A) = 4从而即1 P ( AB) = 4 1 1 P ( B A) = = 4 3 3 4 P ( AB) P( B A ) = P ( A)(2)关系式(2)不仅对上述特例成立,对一般的古典概 型和几何概型问题,也可以证明它是成立的.定义1 设A, B是两个事件,且P( A) > 0,称P ( AB) P( B A ) = P ( A)(3)事件A发生的条件下事件B 发生的条件概率 性质: 设A是一事件,且P(A)>0,则 (1) 对任一事件B,0≤P(B|A)≤1; (2) P(Ω| A) =1 ; 1 1 非负性 非负性 2 2 规范性 规范性 3 3 可列可加性 可列可加性(3) 设B1, B2 ,··· 两两互不相容,则 P[(B1∪B2∪ ···)| A] = P(B1|A)+P(B2|A) + ···(4) P (φ A) = 0.(5) P(B1 ∪ B2 A) = P(B1 A) + P(B2 A) − P(B1 B2 A);(6) P ( B A) = 1 − P ( B A).条件概率的计算根据具体的情况,可选用下列两种方法之一来计算 条件概率P(B|A) (1)在缩减后 ΩA 的样本空间中计算; (2)在原来的样本空间Ω 中,直接由定义计算.条件概率 P(B|A)的样本空间ΩABAB样本空间ΩP( AB) P( B A ) = P( A)缩减的样本空间(即事件A)P( B | A)例2 一袋中有10 个球,其中3个黑球,7个白球, 依次从袋中不放回取两球. ( 1 )已知第一次取出的是黑球,求第二次取出的 仍是黑球的概率; ( 2 )已知第二次取出的是黑球,求第一次取出的 也是黑球的概率. 解 记 Ai = { 第 i 次取到黑球 } ( i = 1, 2) (1)可以在缩减的样本空间 ΩA 上计算。

条件概率和乘法公式

条件概率和乘法公式

机器学习算法
朴素贝叶斯分类器
01
朴素贝叶斯分类器是一种基于贝叶斯定理的分类算法,它利用
条件概率和乘法公式来计算给定特征下类别的概率。
隐马尔可夫模型
02
隐马尔可夫模型是一种用于序列标注和预测的模型,它利用条
件概率和乘法公式来计算状态转移和观测的概率。
条件随机场
03
条件随机场是一种用于自然语言处理的模型,它利用条件概率
03
在学习和应用概率论的过程中,我们需要注重培养自己的逻辑思维和分析能力 。通过深入思考和探究概率论中的问题,我们可以提高自己的数学素养和解决 问题的能力,为未来的学习和工作打下坚实的基础。
THANKS
感谢观看
• 在学习条件概率和乘法公式的过程中,我们需要掌握相关的概念和公式,并能 够灵活运用它们解决实际问题。同时,我们还需要了解条件概率和乘法公式的 局限性和假设条件,以避免在实际应用中出现错误。
• 除了条件概率和乘法公式,概率论中还有许多其他重要的概念和公式,例如全 概率公式、贝叶斯公式、独立性等。这些概念和公式之间有着密切的联系和相 互影响,我们需要系统地学习和理解它们,以建立完整的概率论知识体系。
02
乘法公式及其应用
乘法公式的推导
01
定义
乘法公式描述了两个事件A和B同时发生的概率与事件A发生的概率和事
件B发生的概率之间的关系。
02 03
推导
乘法公式基于概率的独立性假设,即事件A的发生不影响事件B的发生, 反之亦然。因此,事件A和事件B同时发生的概率等于各自发生的概率 的乘积。
公式
$P(A cap B) = P(A) times P(B)$
展望Βιβλιοθήκη 01随着科技的不断发展,概率论在各个领域的应用越来越广泛。未来,条件概率 和乘法公式等概率论知识将更加受到重视和应用。

概率公式大全

概率公式大全

概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。

本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。

1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。

事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。

2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。

2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。

条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。

2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。

根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。

3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。

全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。

这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。

4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。

根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。

条件概率 乘法公式 全概率公式 贝叶斯公式

条件概率 乘法公式 全概率公式 贝叶斯公式
n), 则 P ( A) P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2Bn )
称为全概率公式.
B2
A
B1
Bn1 Bn
B3
证 因为
A AS A( B1 B2 Bn )
B2
A
B1
Bn1 Bn
那么, 全概率公式和贝叶斯公式变为
P ( A) P ( A B ) P ( B ) P ( A B ) P ( B ),
P( A B )P(B ) P ( AB ) . P ( B A) P ( A) P ( A B ) P ( B ) P ( A B ) P ( B )
例5
某电子设备制造厂所用的元件是由三家
打破”.以B表示事件“透镜落下三次而未打破 ” .
因为B A1 A2 A3 , 故有 P ( B ) P ( A1 A2 A3 ) P ( A3 A1 A2 ) P ( A2 A1 ) P ( A1 ) 7 1 9 1 1 1 2 10 10
P ( B1 ) 0.3,
P ( B2 ) 0.5,
P ( B3 ) 0.2,
P ( A B1 ) 0.02, P ( A B2 ) 0.01, P ( A B3 ) 0.01, 故 P ( A) P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A B3 ) P ( B3 )
例4 设某光学仪器厂制造的透镜, 第一次落下 时打破的概率为1/2, 若第一次落下未打破, 第二次 落下打破的概率为7/10, 若前两次落下未打破, 第三 次落下打破的概率为9/10. 试求透镜落下三次而未 打破的概率.(积事件概率) 解 以Ai ( i 1,2,3,4)表示事件“透镜第 i次落下

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有:P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足1.B1,B2....两两互斥,即B i ∩ B j = ∅,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....;2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。

思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件AB1,AB2,...AB n分解成了n部分,即A=AB1+AB2+...+AB n, 每一B i发生都可能导致A发生相应的概率是P(A|B i),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(AB n)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|B n)P(PB n)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。

条件概率与概率的乘法公式

条件概率与概率的乘法公式

B {活到25岁}
显然, B A {现龄为 20岁的这种动物活到 25岁} 因为,“活到25岁”一定要“活过20岁”,所以
C ( A B)
AB
PC P( A B) P A PB 0.85
例3Байду номын сангаас
某人有5把钥匙,其中有一把是办公室门的,但他忘 了是哪一把,只好逐把试开(试完不放回),求三次内把 办公室门打开的概率
解: 设: Ai 恰好第 i次打开门
B 三次内把门打开
B A1 A2 A3




有 :
A1 , A2 , A3
两两互不相容
1 p( A1 ) 5 4 1 1 p( A2 ) 5 4 5
4 3 1 1 p( A3 ) 5 4 3 5
P(B) P( A1 A2 A3 ) PA1 PA2 PA3 0.6
例6
某地区气象资料表明,邻近的甲乙两城市中的甲市全 年雨天比例为12%,乙市全年雨天比例为9%,两城市 中至少有一市为雨天比例为16.8%,试求下列事件的概率

(1)甲市为雨天的条件下,乙市也为雨天 (2)在乙市为无雨的条件下,甲市也无雨
解 设
A {甲市为雨天 }
B {乙市为雨天 }
P( A) 0.12
固A 包含的基本事件数为:P P P 16 P( A) 125
1 1 1 4 4 1
16
由加法公式推论2可知:
16 109 P A 1 P( A) 1 125 125
注意在概率的计算问题中,有的直接运算比较困难 ,可以把直接问题转化成相反问题计算容易的多。

概率:乘法公式及其应用

概率:乘法公式及其应用


P(A)>0,则P(AB)=P(A)P(B|A)
(3)
注ቤተ መጻሕፍቲ ባይዱP(AB)与P(A | B)的区别!
请看下面的例子
例2 甲、乙两厂共同生产1000个零件,其中300 件是乙厂生产的. 而在这300个零件中,有189个 是标准件,现从这1000个零件中任取一个,问这 个零件是乙厂生产的标准件的概率是多少?
P(A)与P(A |B)的区别在于两者发生的条件不同, 它们是两个不同的概念,在数值上一般也不同.
条件概率P(A|B)与P(A)数值关系 条件概率P(A|B)是在原条件下又添加“B 发生”这个条件时A发生的可能性大小. 那么, 是否一定有: P(A|B) P(A)? 或 P(A|B) P(A)? 请思考!!
AB A
S
3. 条件概率的性质(自行验证) 设B是一事件,且P(B)>0,则 1. 对任一事件A,0≤P(A|B)≤1;
2. P (S | B) =1 ;
3.设A1,…,An互不相容,则 P[(A1+…+An )| B] = P(A1|B)+ …+P(An|B)
而且,前面对概率所证明的一些重要性质 都适用于条件概率.
概率:乘法公式及其应用
一、条件概率
1. 条件概率的概念
在解决许多概率问题时,往往需要在 有某些附加信息(条件)下求事件的概率. 如在事件B发生的条件下求事件A发生的 概率,将此概率记作P(A|B). 一般 P(A|B) ≠ P(A)
例如,掷一颗均匀骰子,A={掷出2点},
B={掷出偶数点}, P(A )=1/6, P(A|B)=?
在B发生后的 缩减样本空间 中计算
二、 乘法公式 P ( AB) 由条件概率的定义: P ( A | B) P ( B) 若已知P(B), P(A|B)时, 可以反求P(AB). 即 若P(B)>0,则P(AB)=P(B)P(A|B) (2) 将A、B的位置对调,有 (2)和(3)式都称为乘法公式, 利用 若 P(A)>0,则P(BA)=P(A)P(B|A) 它们可计算两个事件同时发生的概率 而 P(AB)=P(BA)

概率论公式

概率论公式


n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)

0, 1,
x x

c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)


2
n 2
1 (
n
)
e

x 2
x
n 2
1
,
x

0
2

0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)

( E(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率的乘法公式
在概率论和统计学中,条件概率的乘法公式是一项重要的工具,用于计算两个事件同时发生的概率。

它基于条件概率的概念,指出当一个事件依赖于另一个事件时,两个事件同时发生的概率等于第一个事件发生的概率乘以第二个事件在第一个事件发生的条件下发生的概率。

条件概率是指在给定另一个事件发生的条件下,某一事件发生的概率。

用数学符号表示为P(A|B),表示事件B已经发生的情况下,事件A发生的概率。

条件概率的乘法公式可以用以下公式表示:
P(A∩B) = P(A|B) * P(B)
其中,P(A∩B)表示事件A和B同时发生的概率,P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(B)表示事件B发生的概率。

条件概率的乘法公式在实际应用中有着广泛的应用,在许多领域中都可以看到它的身影。

下面将通过几个例子来展示条件概率的乘法公式的应用。

例子1:假设有一批产品,其中20%是次品。

现在从中随机抽取两个产品,求两个产品都是次品的概率。

解答:我们可以将事件A定义为第一个产品是次品,事件B定义为第二个产品是次品。

根据题意,P(A) = 0.2,即第一个产品是次品
的概率为0.2。

而在第一个产品是次品的条件下,第二个产品也是次品的概率为P(B|A) = 0.2。

则根据条件概率的乘法公式,两个产品都是次品的概率为P(A∩B) = P(A|B) * P(B) = 0.2 * 0.2 = 0.04。

例子2:某市场调查显示,在购买某品牌手机的用户中,80%的人对其性能非常满意。

另外,根据另一项调查,不满意该品牌手机性能的人中有30%的人会考虑更换其他品牌手机。

现在从该品牌手机用户中随机选取一个人,求他对该品牌手机性能不满意且考虑更换其他品牌手机的概率。

解答:我们可以将事件A定义为对该品牌手机性能不满意,事件B 定义为考虑更换其他品牌手机。

根据题意,P(A) = 1 - 0.8 = 0.2,即对该品牌手机性能不满意的概率为0.2。

而在对该品牌手机性能不满意的条件下,考虑更换其他品牌手机的概率为P(B|A) = 0.3。

则根据条件概率的乘法公式,对该品牌手机性能不满意且考虑更换其他品牌手机的概率为P(A∩B) = P(A|B) * P(B) = 0.2 * 0.3 = 0.06。

通过以上两个例子,我们可以看到条件概率的乘法公式在计算同时发生多个事件的概率时具有重要的作用。

无论是在商业、科学还是日常生活中,条件概率的乘法公式都能帮助我们更好地理解和计算事件的概率。

因此,掌握和应用条件概率的乘法公式对于我们的决策和判断都具有重要意义。

相关文档
最新文档