单片机最小系统及外扩展

合集下载

第4章MCS-51单片机系统功能扩展

第4章MCS-51单片机系统功能扩展

74LS373结构示意图
74LS373的引脚
引脚说明如下: D7~D0: 8位数据输入端。 Q7~Q0: 8位数据输出端。 G:数据输入锁存控制端:当G为“1” 时,锁存器 输出端与输入端数据相同;当G由“1” 变“0” 时,数据输入锁存器中。 OE#: 输出允许端。
P0口与地址锁存器74LS373的连接
4.1 系统扩展概述
4.1.1 最小应用系统
图4.1 MCS–51单片机最小化系统 (a) 8051/8751最小系统结构图;(b) 8031最小系统结构图
4.1.2 单片机系统扩展的内容与方法
1.单片机的三总线结构
图4.2 MCS–51单片机的三总线结构形式
(1)以P0口作为低8位地址/数据总线。 (2)以P2口的口线作高位地址线。 (3)控制信号线。 *使用ALE信号作为低8位地址的锁存控制信号。 *以PSEN#信号作为扩展程序存储器的读选通信号。 *以EA#信号作为内外程序存储器的选择控制信号。 *由RD#和WR#信号作为扩展数据存储器和I/O口的 读选通、写选通信号。 尽管MCS-51有4个并行I/O口,共32条口线,但由于系 统扩展需要,真正作为数据I/O使用的,就剩下P1 口和P3口的部分口线。
锁存器8282 功能及内部结构与74LS373完全一样,只是其引脚的排 列与74LS373不同 ,8282的引脚如下图。
4.2.2 74LS244和74LS245芯片
在单片机应用系统中, 扩展的三总线上挂接
很多负载, 如存储器、并行接口、A/D接口、显
示接口等, 但总线接口的负载能力有限, 因此常
3) 采用地址译码器的多片程序存储器的扩展
例3 要求用2764芯片扩展8031的片外程序存储器,分配的 地址范围为0000H~3FFFH。

51单片机最小系统

51单片机最小系统

51单⽚机最⼩系统
电路原理图:
最⼩系统组成:
单⽚机、复位电路、晶振(时钟)电路、电源
最⼩系统所⽤到的引脚:
1、主电源引脚
VCC:电源输⼊,接5v电源,第40根引脚
GND:接地线,第20根引脚
2、外接晶振引脚(两根)⼀般晶振⽆⽅向
XTAL1:⽚内电路的晶振输⼊端
XTAL2:⽚内电路的晶振输出端
电容的作⽤:过滤掉晶振部分的⾼频信号,让晶振⼯作更加稳定
3、复位引脚
RST:复位引脚(⾼电平复位) T = RC
刚上电时,引脚为⾼电平(不少于两个时钟周期),单⽚机⾃动复位,从零开始执⾏程序。

1个状态周期 = 2 个震荡周期;1个机器周期= 6个状态周期;1-4个机器周期 = 1个指令周期 震荡周期 = 1/fosc = 1/12MHZ = 0.0833us
4、其它功能
EA:存储器选择引脚,接5v时选内部存储器,低电平选择外部存储器
MCS-51系列单⽚机⽚内RAM共有128字节,地址范围为00H~7FH
ROM 4K字节,地址范围0-0FFFH。

项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)

项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)

(3) MCS-51单片机系统地址空间的分配 系统空间分配:通过适当的地址线产生各外部扩展器件的片 选/使能等信号就是系统空间分配。
编址:编址就是利用系统提供的地址总线,通过适当的连接, 实现一个编址惟一地对应系统中的一个外围芯片的过程。编 址就是研究系统地址空间的分配问题。
片内寻址:若某芯片内部还有多个可寻址单元,则称为片内 寻址。
2)全地址译码法
利用译码器对系统地址总线中未被外扩芯片用到的高位 地址线进行译码,以译码器的输出作为外围芯片的片选信 号。常用的译码器有:74LS139,74LS138,74LS154等。 优点是存储器的每个存储单元只有惟一的一个系统空间地 址,不存在地址重叠现象;对存储空间的使用是连续的, 能有效地利用系统的存储空间。缺点是所需地址译码电路 较多,。全地址译码法是单片机应用系统设计中经常采用 的方法。
1。程序和数据之和不大于 存储器总容量。 2。程序必须存放在低地址,
数据存放在高地址。
三、并行I/O口扩展 MCS-51单片机具有四个并行8位I/O口原理均可用做双向并行 I/O接口,但在实际应用中,可提供给用户使用的I/O口只有P1 口和部分P3口线及作为数据总线用的P0口。在单片机的I/O口 线不够用的情况下,可以借助外部器件对I/O口进行扩展 (1)概述 1)单片机I/O口扩展方法 并行I/O口扩展的目的:为外围设备提供一个输入输出通道。 ①并行总线扩展的方法 ②串行口扩展方法(只介绍总线扩展方式下I/O接口扩展方法) ③I/O端口模拟串行方法
二、存储器的扩展 存储器是计算机系统中的记忆装置,用来存放要运行的程 序和程序运行所需要的数据。单片机系统扩展的存储器可分为 程序存储器和数据存储器两种类型。
(1)MCS-51单片机对外部存储器的扩展应考虑的问题

什么是单片机最小系统_单片机的最小系统简述

什么是单片机最小系统_单片机的最小系统简述

什么是单片机最小系统_单片机的最小系统简述单片机简介单片机是一种集成电路芯片。

它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。

所以说,一片单片机芯片就具有了组成计算机的全部功能。

由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。

然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。

单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。

不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。

这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。

软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。

开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。

要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。

单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电。

第6章 MCS-51单片机系统扩展技术

第6章  MCS-51单片机系统扩展技术

6.3 数据存储器扩展
6.3.1 静态RAM扩展电路
6.3.2 动态RAM扩展电路
返回本章首页
6.3.1 静态RAM扩展电路
常用的静态RAM芯片有6116,6264,62256等,其 管脚配置如图6-13所示。
1.6264静态RAM扩展 额定功耗200mW,典型存取时间200ns,28脚双列直插 式封装。表6-1给出了6264的操作方式,图6-14为6264静 态RAM扩展电路。
图 6 9
A EEPROM
28 17
扩 展 电 路
写入数据
不是指令
查询 中断 延时
2.2864A EEPROM 扩展
2864A有四种工作方式: (1)维持方式 (2)写入方式 (3)读出方式 (4)数据查询方式
图 6 12
28 64
返回本节
A EEPROM
扩 展 电 路
串行E2PROM简介 串行E2PROM占用引线少、接线简单,适用于作为数据存储 器且保存信息量不大的场合。 以AT93C46/56/57/66为例,它是三线串行接口E2PROM, 能提供128×8、256×8、512×8或64×16、128×16、256×16 位,具有高可靠性、能重复擦写100,000次、保存数据100年 不丢失的特点,采用8脚封装。
第6章 MCS-51单片机系统扩展技术
6.1 MCS-51单片机系统扩展的基本概念
6.2 程序存储器扩展技术
6.3 数据存储器扩展 6.4 输入/输出口扩展技术
T0 T1
时钟电路
ROM
RAM
定时计数器
CPU
并行接口 串行接口 中断系统
P0 P1 P2 P3
TXD RXD
INT0 INT1

单片机最小系统

单片机最小系统

单片机最小系统STC89C52单片机简介概述STC89C5是51系列单片机的一个型号,它是STCME公司生产的。

STC89C5是一个低电压,高性能CMOS 位单片机,片内含8k bytes的可反复擦写的Flash 只读程序存储器和256 bytes的随机存取数据存储器(RAM,器件采用STCMEL 公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的STC89C52单片机可为您提供许多较复杂系统控制应用场合。

STC89C52有40个引脚,32个外部双向输入/输出(I/O )端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,STC89C52 可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

STC89C52有PDIP、PQFP/TQF及PLCC 等三种封装形式,以适应不同产品的需求。

主要功能特性兼容MCS5指令系统8k可反复擦写(>1000次)Flash ROM32 个双向I/O 口? 256x8bit 内部RAM3个16位可编程定时/计数器中断?时钟频率0-24MHZ2个串行中断可编程UART串行通道2个外部中断源共8个中断源2个读写中断口线3级加密位低功耗空闲和掉电模式软件设置睡眠和唤醒功能8051单片机的引脚功能MCS-51系列单片机一般采用40个引脚,双 列直插式封装,用HMO 工艺制造,其外部 引脚排列如图所示。

其中,各引脚的功能为: (a ) DIP 引脚图(b ) 逻辑符号8051单片机的引脚⑴主电源引脚Vcc (40脚):接+ 5V 电源正端Vss (20脚):接+ 5V 电源地端一般Vcc 和Vss 间应接高频去耦电容和低频 滤波电容。

⑵外接晶体或外部振荡器引脚F1.0 Vcc F1.1 FO.O Pl.2 PD.l Pl.3 P0.2 P] J P0.3 Pl.S P0.4 Pl.6 9051 PQ.5 Pl.7 P66 KST/V FD PCI] P3.0/RxD E£/T FF F3.1;TsD ALE/PROG P3.27IKT0 PSEW F3,3/IIII1 F2.7 F3.4/T0 F2.S P3.5u/Tl F2.5 P3.fi/TC P2.4 F3.7/RP F2.3 XIAL2 F2.2 STAL1 F2J Vss P2.0 XT2L1 XTAL2EA/Vpr PSEII — ALE/PROG * RST/VPD - 「 K K D -----* T K D — INTO —K) 8051 (地址/■数据总枝)口3 P3(I T1TO I1WED II] 40 237 6 36 357 34 3 33 11 13 28 14 27 15 16 17 24 19 23 22 19 20 21 _1 10 32 31 39 33 FD 口 P1口 门用P2 (地址 总线)XTAL1( 19脚):接外部晶振的一个引脚。

河大版-信息技术-六年级下册-单片机最小系统

河大版-信息技术-六年级下册-单片机最小系统

单片机最小系统1.绪论由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。

目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。

单片机最小系统是在以MCS-51单片机为基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。

单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。

本课题设计主要在MCS-51单片机上扩展I/O口,扩展定时器定时范围,扩展键盘显示接口。

适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。

因此,研究单片机最小系统有很大的实用意义。

2.单片机概述2.1 什么是单片机单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU 集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

用专业语言讲,单片机就是在一块硅片上集成了微处理器、存储器及各种输入/输出接口的芯片。

2.2 单片机的发展简史早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

单片机最小系统

单片机最小系统

单片机最小系统单片机最小系统是指以单片机为核心,配以必要的外围电路,实现一定功能的电路系统。

它通常包含单片机、电源、时钟电路、复位电路和程序存储器等部分。

下面将详细介绍单片机最小系统的构成和特点。

单片机:单片机是整个系统的核心,它负责数据处理和控制信号输出。

常用的单片机型号有AT89CPIC16F877A等。

电源:为单片机提供电能,一般采用直流电源,如5V、3V等。

时钟电路:为单片机提供时钟信号,常用的时钟芯片有0592MHz和4MHz等。

复位电路:当单片机出现程序跑飞或异常情况时,可以通过复位电路使单片机重新启动。

常用的复位芯片有MAX811等。

程序存储器:用于存储单片机程序,常用的存储器有EPROM、EEPROM 和Flash等。

结构简单:单片机最小系统以单片机为核心,配以外围电路,结构简单,易于实现。

功能灵活:通过编程,单片机可以实现各种不同的功能,如数据采集、控制输出、通信等。

可靠性高:由于单片机最小系统结构简单,所以其可靠性较高,适用于各种工业控制和智能家居等领域。

成本低廉:单片机最小系统的硬件成本较低,适用于各种低成本应用场景。

单片机最小系统是一种简单、灵活、可靠且低成本的电路系统,广泛应用于各种嵌入式系统开发中。

随着物联网、智能家居等领域的快速发展,单片机最小系统的应用前景也将更加广阔。

在嵌入式系统和智能硬件领域,单片机最小系统作为一种基本的控制器单元,具有广泛的应用价值。

本文将介绍单片机最小系统的设计与应用,包括系统设计、系统应用和系统优化等方面的内容。

单片机最小系统通常由微处理器(MCU)、电源电路、时钟电路和复位电路等组成。

在设计单片机最小系统时,需要根据具体的应用需求选择合适的微处理器,并搭建相应的电源电路、时钟电路和复位电路。

单片机最小系统的架构设计应考虑应用需求和系统可靠性。

一般而言,系统架构应包括以下几个部分:(1)微处理器:作为系统的核心,微处理器负责数据计算、处理和传输等任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、移位寄存器串行扩展应用
80C51移位寄存器串行扩展应用,只需根据 标准化的电路形式连接,设置好入口条件,然后
调用串行方式0归一化子程序或虚拟串行接口归
一化子程序,即可完成扩展应用。
【例8-1】电路如图8-5所示,fosc = 12MHz,要求 发光二极管从左向右依次点亮,点亮时间为1秒,不 断循环。设串行方式0归一化子程序已存在ROM中。
§8-3 I2C总线串行扩展技术
一、I2C总线串行扩展概述
1、扩展连接方式
具有I2C总线结构的器件,不论SRAM、E2PROM、
ADC/DAC、I/O口或MCU,均可通过SDA、SCL连接
(同名端相连)。
无I2C总线结构的器件,如LED/LCD显示器、键
盘、码盘、打印机等也可通过具有I2C总线结构的 I/O接口电路成为串行扩展器件。
三、80C51 I/O虚拟串行接口
利用80C51通用I/O口虚拟移位寄存器工作方式实 现串行扩展,只需用任一通用I/O口代替RXD和TXD,设 为VRXD和VTXD。 80C51虚拟串行I/O口归一化子程序: ⑴ 单字节虚拟串行输出子程序 ⑵ 单字节虚拟串行输入子程序 ⑶ 多字节虚拟串行输出子程序 ⑷ 多字节虚拟串行输入子程序
SPI的时钟线是SCK,数据线MOSI(主发从 收)、MOSO(主收从发),主从器件的MOSI和 MOSO是同名端相连。 Micro wire /PLUS的时钟线是SK,数据线 为SI和SO,但SI、SO依照主器件的数据传送方向 而定,主器件的SO与所有扩展器件数据输入端DI 或SI相连;主器件的SI与所有扩展器件数据输出 端DO或SO相连。 由于该两类器件无法通过数据传输线寻址, 因此,必须由MCU I/O线单独寻址,连到扩展器 件的片选端CS(若只扩展一片,可将扩展芯片CS 接地)。
§8-2
89C51移位寄存器 串行扩展技术
一、移位寄存器串行扩展方式
80C51串行方式0时,串行口作为 同步移位寄存器使用。TXD端(P3.1) 发出移位脉冲,频率为fosc/12,RXD 端(P3.0)输入输出数据。
寄存器,其中A、B为串行数据输入 端,QA、QB、…、QH为并行数据输出端(QA为高位),CLK为同 步时钟输入端,CLR为输出清0端。若不需将输出数据清0,则 CLR端接Vcc。
二、串行扩展方式分类
1、一线制
一线制的典型代表为Dallas公司推出的单总线 (1-wire)。
2、二线制
二线制的典型代表为philips公司推出的I2C总线 (Intel Integrated Circuit BUS )。
3、三线制
三线制(不包括片选线)主要有两种: ⑴ 由Motorala公司推出的SPI(Serial peripheral Interface); ⑵ 由NS公司推出的Micro wire /PLUS。
解:
PIOX1 BIT P1.0 WORK: MOV A,#10000000B LOOP: CLR PIOX1 LCALL UART0 LCALL DLY1s RR A SJMP LOOP
;定义PIOX1 ;置D7灯亮,其余暗 ;74LS164输出全0,灯全暗 ;调用单字节串行输出子程序 ;调用延时1秒子程序(略) ;右移 ;
2、器件寻址方式
具有I2C总线结构的器件在器件出厂时已经 给定了器件的地址编码。 I2C总线器件地址SLA格式如下:
D7 SLA D6 D5 D4 D3 D2 D1 D0
DA3
DA2
DA1
DA0
A2
A1
A0
R/ W
读/写
器件固有地址编码
器件引脚地址
⑴ DA3~DA0 4位器件地址是I2C总线器件固有的地址编码, 器件出厂时就已给定,用户不能自行设置。 ⑵ A2A1A0 3位引脚地址用于相同地址器件的识别。若I2C总线 上挂有相同地址的器件,或同时挂有多片相同器件时,可用硬 件连接方式对3位引脚A2A1A0接Vcc或接地,形成地址数据。 ⑶ R/W 数据传送方向。R/W=1时,主机接收(读); R/W=0时,主机发送(写)。
2、80C51扩展并行输入口
74LS165为并入串出移位寄存器,A、B、…、H为并行输入端 (A为高位),QH为串行数据输出端,SER为串行数据输入端, CLK为同步时钟输入端,S/L为预置控制端。S/L=0时,锁存并行 输入数据;S/L=1时,可进行串行移位操作。
二、串行方式0归一化子程序
所谓归一化子程序,即通用或标准化操作子程序, 将80C51串行方式0所有应用操作归纳成几个基本的输入 输出子程序,并使这些标准子程序具有规范的入口条件 和出口状态。应用时,只要设置相应的入口和出口,调 用归一化子程序,就能达到串行输入输出的目的。 80C51串行方式0归一化子程序: ⑴ 单字节串行输出子程序 ⑵ 单字节串行输入子程序 ⑶ 多字节串行输出子程序 ⑷ 多字节串行输入子程序
外部扩展的器件可以有ROM、RAM、I/O口和 其他一些功能器件,扩展器件大多是一些常规芯 片,有典型的扩展应用电路,可根据规范化电路 来构成能满足要求的应用系统。
§8-1
串行扩展概述
一、串行扩展特点
⑴ 最大程度发挥最小系统的资源功能。 原来由并行扩展占用的P0口、P2口资源,直 接用于I/O口。 ⑵ 简化连接线路,缩小印板面积。 ⑶ 扩展性好,可简化系统的设计。 ⑷ 串行扩展的缺点: 数据吞吐容量较小,信号传输速度较慢,但 随着CPU芯片工作频率的提高,以及串行扩展芯片 功能的增强,这些缺点将逐步淡化。
4、80C51 移位寄存器串行扩展
80C51的UART(Universal Asynohronous Receiver/Transmitter)有4种工作方式,其中方 式0为同步移位寄存器工作方式,通过移位寄存 方式,可将串行数据并行输出,也可以将并行数 据串行输入。
三、虚拟串行扩展概念
用通用I/O口来模拟串行接口,构成虚拟的 串行扩展接口。只要严格控制模拟同步信号, 并满足串行同步数据传送的时序要求,就可满 足串行数据传送的可靠性要求。
并行扩展总线组成(地址、数据、控制总线) 并行扩展寻址方式(线选法、译码法) 并行扩展EPROM 并行扩展E2PROM 并行扩展RAM 用74系列芯片并行扩展I/O口 扩展总线驱动能力
89C51系列单片机有很强的外部扩展能力。 外部扩展可分为并行扩展和串行扩展两大形式。 早期的单片机应用系统以采用并行扩展为多, 近期的单片机应用系统以采用串行扩展为多。
相关文档
最新文档