实验七 计数器及其应用学生版
实验七 计数器逻辑功能测试及应用实验报告

数字电子技术实验报告实验名称计数器逻辑功能测试及应用一、实验目的1.熟悉掌握中规模集成电路计数器74LS161和74LS90的逻辑功能,使用方法及应用。
2.掌握构成任意进制计数器的方法。
二、实验设备及器件1.数字逻辑电路实验箱1个2.74LS161同步加法二进制计数器1片3.74LS90异步加法二、五、十进制计数器1片4.74LS00二输入四与非门1片5.74LS74双D触发器1片6.74LS11三输入三与门1片7.74LS47 BCD码七段译码器2片三、实验原理(有删减,详细原理,见实验指导书)计数器是一个用以实现技术功能的时序部件,它不仅可用来计脉冲,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步技术器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据技术的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种比较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
利用中规模集成计数器构成任意进制计数器的方法归纳起来有乘数法、复位法、和置数法。
①.乘数法将两个计数器串接起来,即技术脉冲接到N进制计数器的时钟输入端,N进制计数器的输出接到M进制计数器的时钟输入端,则两个计数器一起构成了N x M进制计数器。
74LS90就是典型的例子,二进制和五进制和五进制计数器构成2X5=10进制计数器。
②.复位法用复位法构成N进制计数器所选用的中规模集成技术器的计数容量必须大于N。
当输入N个技术脉冲之后,计数器应回到全0状态。
置零复位法:利用Cr=0时,Q3Q2Q1Q0=0000,使计数器回到全0状态。
预置端送0:使计数器数据输入全0,当第N—1个计数脉冲到达后,让预置端LD=0.当第N个计数脉冲到来时Q3Q2Q1Q0=0000,使计数器回到全0状态。
实验7 计数器实验

班级姓名学号一、实验项目:计数器二、使用集成块型号:74LS00、74LS161、74LS74.三、实验内容:1、测试74LS161十六进制计数器的逻辑功能。
CP脉冲输入端;CR异步清零端;LD同步置数端;CT T、CT P计数允许控制端;CO进位输出端。
D3、D2、D1、D0数据输入端;Q3、Q2、Q1、Q0输出端;2、利用直接清零法,使用计数器74LS161和与非门74LS00构成十二进制计数器,并画出状态图。
3、用预置数据法,使用计数器74LS161和与非门74LS00构成构成七进制计数器,并画出状态图。
4、采用级联法,使用两片74LS161和与非门74LS00构成二十四进制计数器,画出逻辑电路图,根据逻辑图连线。
利用单脉冲输入源给CP端加入脉冲信号,观察输出Q3Q2Q1Q0端的状态变化,并画出状态图。
5、用74LS74D触发器构成两位二进制异步加法计数器。
6、用74LS74D触发器构成两位二进制异步减法计数器,将左图电路中的低位触发器的Q端和高位的CP端相连接,构成减法计数器。
置数和清零的区别:清零的信号是立即产生的,比如都对于十进制来说,若采用清零法,则应该利用9的二进制,1001的下一位1010来产生脉冲信号,将输出端的第一位和第三位通过与非门得到低电平将161清零,也就是说我们利用的真正状态是10的二进制。
而如果我们采用置数法,因为芯片的设计原因,在计数器进入9的二进制1001后,输出端并没有立即置数,而是保持该状态不变,直到下一个时钟脉冲的上升沿到来为止,这个1001是一个稳定的状态,我们利用它的第0位和第三位通过与非门得到低电平将161置位为0000,才能形成十进制,那么我们利用的真正状态是9的二进制,而不是10,这就是清零与置数的根本区别。
电子技术实验报告7-计数器及其应用(葛楚雄)

74LS90为中规模TTL集成计数器,可实现二分频、五分频和十分频等功能,它由一个二进制计数器和一个五进制计数器构成。其引脚排列图和功能表如下所示:
3、中规模十进制计数器74LS192(或CC40192)
74LS192是同步十进制可逆计数器,它具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如下所示:
图16-6 74LS192级连示意图
6、实现任意进制计数
(1)用复位法获得任意进制计数器
假定已有一个N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置零,即获得M进制计数器。如下图16-7所示为一个由74LS192十进制计数器接成的5进制计数器。
(2)利用预置功能获得M进制计数器
二、实验原理介绍
计数器是数字系统中用得较多的基本逻辑器件,它的基本功能是统计时钟脉冲的个数,即实现计数操作,它也可用于分频、定时、产生节拍脉冲和脉冲序列等。例如,计算机中的时序发生器、分频器、指令计数器等都要使用计数器。
计数器的种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,可分为同步计数器和异步计数器;按进位体制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;按计数过程中数字增减趋势的不同,可分为加法计数器、减法计数器和可逆计数器;还有可预制数功能等等。
从逻辑图和功能表可知,该计数器具有清零信号/MR,使能信号CEP,CET,置数信号PE,时钟信号CP和四个数据输入端P0~P3,四个数据输出端Q0~Q3,以及进位输出TC,且TC=Q0·Q1·Q2·Q3·CET。
5、计数器的级连使用
一个十进制计数器只能显示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级连使用。同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号来驱动下一级计数器。下图为用2片74LS192级连使用构成2位十进制加法计数器的示意图:
计数及其应用实验报告

计数及其应用实验报告计数及其应用实验报告引言:计数是数学中的基本概念之一,广泛应用于各个领域。
本实验旨在通过实际操作和观察,探究计数的原理及其在实际生活中的应用。
一、实验目的通过实验,了解计数的基本原理,掌握计数的方法和技巧,并探究计数在实际生活中的应用。
二、实验材料和方法1. 实验材料:- 计数器- 计数棒- 计数器软件2. 实验方法:- 使用计数器进行手动计数- 使用计数棒进行物体计数- 使用计数器软件进行电子计数三、实验过程与结果1. 手动计数:我们首先使用计数器进行手动计数。
将计数器置零,然后按下计数按钮,每按一次计数器数值加一。
我们选择了一个简单的实验,计数从1到10。
通过手动计数,我们可以清晰地观察到计数器的数值变化,从而掌握手动计数的方法和技巧。
2. 物体计数:接下来,我们使用计数棒进行物体计数。
我们选择了一堆相同形状的石子,并将其分成若干小堆。
然后,我们使用计数棒逐一计数每一小堆的石子数量,并记录下来。
通过物体计数,我们可以更好地理解计数的概念,并培养观察和记录的能力。
3. 电子计数:最后,我们使用计数器软件进行电子计数。
我们将计数器软件安装在电脑上,并通过鼠标点击计数按钮进行计数。
与手动计数相比,电子计数更加快速和准确。
我们可以通过电子计数实验,了解到计数在信息技术领域的应用,例如数据统计和编程算法等。
四、实验分析与讨论通过本次实验,我们对计数的原理和方法有了更深入的了解,并认识到计数在实际生活中的广泛应用。
计数不仅仅是数学中的概念,更是我们日常生活中必不可少的技能。
例如,在购物时我们需要计算物品的数量和价格;在统计数据时我们需要进行数据的计数和整理;在编程时我们需要运用计数的思维方式来解决问题。
此外,计数也与概率统计密切相关。
通过计数的方法,我们可以计算事件发生的可能性,并进行概率的推断和统计分析。
例如,在赌博游戏中,我们可以通过计数的方法来计算不同结果的概率,并进行相应的决策。
计数器及应用实验报告

计数器及应用实验报告计数器及应用实验报告引言:计数器是一种常见的电子设备,用于记录和显示特定事件或过程中发生的次数。
在实际应用中,计数器广泛用于各种领域,如工业自动化、交通管理、计时系统等。
本文将介绍计数器的原理、分类以及在实验中的应用。
一、计数器的原理计数器是由一系列的触发器组成的,触发器是一种能够存储和改变状态的电子元件。
计数器的工作原理是通过触发器的状态改变来记录和显示计数值。
当触发器的状态从低电平变为高电平时,计数器的计数值加一;当触发器的状态从高电平变为低电平时,计数器的计数值减一。
计数器可以根据需要进行正向计数、逆向计数或者同时进行正逆向计数。
二、计数器的分类根据计数器的触发方式,计数器可以分为同步计数器和异步计数器。
同步计数器是指所有触发器在同一个时钟脉冲的控制下进行状态改变,计数值同步更新;异步计数器是指触发器的状态改变不依赖于时钟脉冲,计数值异步更新。
根据计数器的位数,计数器又可以分为4位计数器、8位计数器、16位计数器等。
三、计数器的应用实验1. 实验目的本实验旨在通过设计和搭建一个简单的计数器电路,了解计数器的工作原理和应用。
2. 实验器材- 74LS74触发器芯片- 电路连接线- LED灯- 开关按钮3. 实验步骤步骤一:搭建计数器电路根据实验原理,将74LS74触发器芯片与LED灯和开关按钮连接起来,形成一个简单的计数器电路。
步骤二:测试计数器功能将电路连接到电源,并按下开关按钮。
观察LED灯的亮灭情况,记录计数器的计数值变化。
步骤三:应用实验根据实际需求,将计数器电路应用到实际场景中。
例如,可以将计数器电路连接到流水线上,用于记录产品的数量;或者将计数器电路连接到交通信号灯上,用于记录通过的车辆数量。
4. 实验结果与分析通过实验测试,我们可以观察到LED灯的亮灭情况,并记录计数器的计数值变化。
根据实验结果,我们可以验证计数器的功能是否正常。
在应用实验中,我们可以根据实际需求来设计和改进计数器电路,以满足不同场景下的计数需求。
计数器及其应用实验报告

一、实验目的1. 理解计数器的基本原理和构成方式。
2. 掌握中规模集成计数器的使用方法和功能测试。
3. 了解计数器在数字系统中的应用,如定时、分频、数字运算等。
二、实验原理计数器是一种时序逻辑电路,用于对输入脉冲进行计数。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制、十进制、任意进制。
2. 触发器翻转方式:同步、异步。
3. 计数功能:加法、减法、可逆(加/减)。
常见的集成计数器有74LS161(4位二进制同步加法计数器)、74LS193(4位二进制同步可逆计数器)等。
三、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS001四、实验步骤1. 搭建实验电路:根据实验要求,搭建计数器实验电路,包括计数器芯片、时钟源、复位端等。
2. 功能测试:分别对计数器进行加法计数、减法计数、可逆计数等功能的测试,观察输出波形和计数结果。
3. 应用实验:利用计数器实现定时、分频等功能,观察实际效果。
五、实验结果与分析1. 功能测试:- 加法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证加法计数功能。
- 减法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证减法计数功能。
- 可逆计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证可逆计数功能。
2. 应用实验:- 定时功能:利用计数器实现定时功能,例如,通过计数器计数1000个脉冲,实现1秒定时。
- 分频功能:利用计数器实现分频功能,例如,将输入的50Hz时钟信号分频为5Hz。
六、实验总结通过本次实验,我们掌握了计数器的基本原理、构成方式和使用方法,了解了计数器在数字系统中的应用。
实验过程中,我们学会了如何搭建实验电路、进行功能测试和应用实验。
本次实验有助于提高我们对数字电路和时序逻辑电路的理解,为后续学习打下基础。
七、实验心得1. 计数器在数字系统中应用广泛,掌握计数器的基本原理和构成方式非常重要。
实验:计数器功能及其应用

实验计数器功能及其应用实验目的:通过实验,熟悉中规模集成计数器的功能及应用,掌握利用中规模集成电路计数器构成任意进制计数器的方法,学会综合测试的方法,让学生加深对相关理论知识的理解。
实验原理:计数器对输入的时钟脉冲进行计数,来一个CP脉冲计数器状态变化一次。
根据计数器计数循环长度M,称之为模M计数器(M进制计数器)。
通常,计数器状态编码按二进制数的递增或递减规律来编码,对应地称之为加法计数器或减法计数器。
一个计数型触发器就是一位二进制计数器。
N个计数型触发器可以构成同步或异步N位二进制加法或减法计数器。
当然,计数器状态编码並非必须按二进制数的规律编码,可以给M进制计数器任意地编排M个二进制码。
在数字集成产品中,通用的计数器是二进制和十进制计数器。
按计数长度、有效时钟、控制信号、置位和复位信号的不同有不同的型号。
74LS161是集成TTL四位二进制加法计数器,其符号和管脚分布分别如下图所示:表 8-1为74LS161的功能表:表8-1A B C D从表1在为低电平时实现异步复位(清零需要时钟信号。
在复位端高电平条件下,预置端LD为低电平时实现同步预置功能,即需要有效时钟信号才能使输出状态等于并行输入预置数 A B C D。
在复位和预置端都为无效电平时,两计数使能端输入使能信号,74LS161实现模16加法计数功能,;两计数使能端输入禁止信号,,集成计数器实现状态保持功能,。
在时,进位输出端OC=1。
在数字集成电路中有许多型号的计数器产品,可以用这些数字集成电路来实现所需要的计数功能和时序逻辑功能。
用M进制集成计数器构成任意N进制计数器:1、M>N,需一片M进制计数器一种为反馈清零法,另一种为反馈置数法。
(1)反馈清零法反馈清零法是利用反馈电路产生一个给集成计数器的复位信号,使计数器各输出端为零(清零)。
反馈电路一般是组合逻辑电路,计数器输出部分或全部作为其输入,在计数器一定的输出状态下即时产生复位信号,使计数电路同步或异步地复位。
实验七集成计数器

实验七集成计数器一、实验目的1.熟悉集成计数器的逻辑功能和各控制端作用。
2.掌握计数器使用方法。
二、实验原理中规模集成电路计数器的应用十分普及。
然而,定型产品的种类是很有限的。
常用的多为十进制、二进制、十六进制几种。
因此必须学会用已有的计数器芯片构成其它任意进制计数器的方法。
本实验采用中规模集成电路计数器74LS93芯片,它的集成单元是二进制计数器,它是由四个主从JK触发器和附加电路组成的,最长计数周期是16,适当改变外引线,可以构成不同长度的计数周期。
74LS93逻辑图外引线排列如图所示。
如果使用该计数器的最大长度(四位二进制),可将B IN 输入同A IN输出连接,由A IN输入计数脉冲。
接电平显示置零/计数功能表三、实验仪器和器件1.实验仪器(1)DZX-2B 型电子学综合实验装置 1台 (2)双踪四迹示波器(YB4320A 型) 2.器件(1)74LS00 (二输入端四与非门) (2)74LS20 (四输入端二与非门) (5)74LS93 (异步二进制计数器) 四、实验内容1.集成计数器74LS93功能测试。
1 2 3 4 5 6 774LS93引脚排列1Hz 方波接逻辑电平图7-1二—十六进制计数器接电平显示表6-12.用集成计数器74LS93构成计数周期为6、10、7、9、14、15的二进制计数器。
表7-21Hz 方波接电平显示 图7-2二—六进制计数器表7-31Hz 方波接电平显示 图7-3二—十进制计数器1Hz 方波接电平显示 图7-4二—七进制计数器1Hz 方波接电平显示 图7-5二—九进制计数器冲或 1Hz 波接电平显示 图7-6二—十四进制计数器表7-7五、实验报告要求1.自行设计实验电路和实验表格,记录、整理实验数据; 参见图7-1~图7-2和表7-1~表7-2。
2.集成计数器74LS93是同步还是异步计数器?是加法还是减法计数器? 集成计数器74LS93是异步加法计数器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七计数器及其应用
一、实验目的
1.学习用集成触发器构成计数器的方法
2.掌握中规模集成计数器的使用方法及功能测试方法
3.运用集成计数器构成1∕N分频器
二、实验原理
计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数器的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、用D触发器构成异步二进制加∕减计数器
图7-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T′触发器,再由低位触发器的Q端和高一位的CP端相连接。
图7-1
若将图7-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器
三、实验内容
1.用74LS74触发器构成4位二进制一步加法计数器。
(1)按图7-1连接,R D接至逻辑开关输出插口,将低位CP O端接单次脉冲源,输出端Q3、Q2、Q1、Q0接逻辑电平显示输入插口。
(2)清零后,逐个送入单次脉冲,观察并列表记录Q3~Q0状态。
(3)将图7-1电路中的底位触发器的Q端与高一位的CP端相连接,构成减法计数器,按实验内容(2)、(3)进行实验,构成并列表记录Q3~Q0的状态。
加法减法
五、实验预习要求
1.复习有关计数器部分内容
2.绘出各实验内容的详细线路图
3.拟出各实验内容所需的测试记录表格
4.查手册,给出并熟悉实验各集成块的引脚排列图
六、实验报告
1.画出实验线路图,记录、整理实验现象及实验所得的有关波形。
对实验结果进行分析。
2.总结使用集成计数器的方法。