沪教版九年级数学第一学期 基础知识点汇总
沪教版九年级数学第一学期-基础知识点汇总

沪教版九年级数学第一学期-基础知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2019年九年级第一学期基础知识点汇总第一章 相似三角形知识点一:比例线段关键点拨与对应举例1. 比例线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d的比,即a cbd=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0) (2)合比性质:a cb d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b +=85. 3.平行线分线段成比例定理 (1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定 (1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,F E D CB Al 5l 4l 3l 2l 1ODC BAED CBAFE DC B AFE DC B AAC ABDF DE=,则△ABC ∽△DEF. 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍. (2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第二章 解直角三角形知识点一:锐角三角比的定义关键点拨与对应举例 1.锐角三角比正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.根据定义求三角函比时,一定根据题目图形来理解,严格按照三角比的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角比度数三角比 30°45°60°sinA 1222 32 cosA322212FE DC B A:解直角三角形的应用(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;第三章二次函数二次函数的应用。
初三上册数学知识点归纳沪科版

初三上册数学知识点归纳沪科版
一、数的概念:
1.数的分类,定义:
(1)自然数(n):1、2、3、4、5、6……
(2)整数:正整数、负整数和零
(3)有理数:带有有理分数、无理分数等
(4)实数:有理数、无理数和根号数
2.基本运算
(1)加法:相加运算、逆序加法运算、分配律、根号和
(2)减法:相减法、借位减法、去除法
(3)乘法:口算、相乘法、从大到小乘法、乘方法、乘方展开法(4)除法:口算、×0.1、0.01、0.001等变形法、倒数法、约简法、公约数法
二、代数:
1.代数的概念:广义的代数是研究非数的的结构的数学,特指求解一元二次方程时用到的代数学知识
2.一元二次方程:
(1)正定解:一元二次方程ax²+bx+c=0有一对相等的实数根
(2)无解:一元二次方程ax²+bx+c=0,当a=0、b=0、c≠0时有无解
(3)重根:一元二次方程ax²+bx+c=0,当a≠0、b²-4ac=0时有重根
三、平面几何:
1.平面几何图形:
(1)直线:由若干点组成的一条没有曲线的折线段。
(2)圆:由一个点为中心,其余所有点与它的距离都相等的图形。
(3)三角形:由三条直线汇合而成的图形,其内角之和为180度。
(4)多边形:由若干条直线段汇合而成的图形,其内角和等于360度
2.相关知识:
(1)全等三角形
(2)三角形的边、角关系
(3)三角形的有关公式:三角形的面积公式、内角和公式、外角和公式等
(4)四边形的角关系
(5)多边形的内角和公式
(6)等腰三角形、等边三角形、等边六边形等。
沪教版九年级数学知识点

沪教版九年级数学知识点初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)初三数学上册知识点归纳圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆有无数条对称轴。
(2)圆的相关特点1)径连接圆心和圆上的任意一点的线段叫做半径,字母表示为r通过圆心并且两端都在圆上的线段叫做直径,字母表示为d直径所在的直线是圆的对称轴。
沪教版初三数学知识点归纳

沪教版初三数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的根本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算(方法)6.圆柱、圆锥的侧面绽开图及相关计算九年级上册数学单元学问点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
九年级数学知识点归纳沪教版

九年级数学知识点归纳沪教版初三第一学期数学知识点角的度量与分类角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360等份,每一份叫做一度的角。
1度=60分;1分=60秒。
角的分类:(1)锐角:小于直角的角叫做锐角(2)直角:平角的一半叫做直角(3)钝角:大于直角而小于平角的角(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a互余角的三角函数间的关系sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα。
平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)积的关系:sinα=tanα?cosαcosα=cotα?sinαtanα=sinα?secαcotα=cosα?cscαsecα=tanα?cscαcscα=secα?cotα倒数关系:tanα?cotα=1sinα?cscα=1cosα?secα=1初三上册数学知识点归纳因式分解1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的公约数?相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”.分式1.分式:一般地,用a、b表示两个整式,a÷b就可以表示为的形式,如果b 中含有字母,式子叫做分式.2.有理式:整式与分式统称有理式;即.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则:.8.分式的乘方:.9.负整指数计算法则:(1)公式:a0=1(a≠0),a-n=(a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式:(-1)-2=1,(-1)-3=-1.苏教版初三数学知识点空间与图形A:图形的认识:1:点,线,面点,线,面:①图形是由点,线,面构成的。
初三上册数学知识点归纳沪科版

初三上册数学知识点归纳沪科版
一、整数与分数
1.整数的概念、绝对值、相反数和加减法
2.带分数的加减法、乘法和除法
3.分数的概念、化简、加减法和乘除法
4.数轴及其上的整数和分数的表示
二、代数初步
1.代数的基本概念、字母的运算和表示
2.算式计算、正负数的混合运算
3.代数式的概念、含有一个未知数的代数式的计算
4.二元一次方程的概念、解的概念和解线性方程
三、图形初步
1.基本图形的概念,包括点、线段、直线、射线和角
2.平面图形的概念,包括三角形、四边形、多边形和圆
3.平移、旋转和对称的概念
4.直线与平面的关系、直线的倾斜度和对应的斜率
四、数表与数图
1.表格的制作和表示
2.折线图和直方图的制作和表示
3.用折线图和直方图进行数据的分析和比较
五、比例与百分数
1.比例的概念和性质
2.比例中的四则运算
3.百分数的概念和计算方法
4.分数与百分数之间的转换
六、三角形的性质
1.三角形中角的性质
2.三角形中边的性质
3.三角形的合同和相似
4.三角形的面积和周长的计算
七、图形的变换
1.平移的概念和性质
2.旋转的概念和性质
3.对称的概念和性质
4.缩放的概念和性质
以上是初三上册数学知识点的归纳,涵盖了整数与分数、代数初步、图形初步、数表与数图、比例与百分数、三角形的性质和图形的变换等内容。
掌握了这些知识点,学生将会对初中数学的基本概念和基本运算有一个全面的了解,为进一步学习数学打下坚实的基础。
沪教版九年级上数学知识点

沪教版九年级上数学知识点数学作为一门学科,是我们日常生活中不可或缺的一部分。
在九年级上册的数学课程中,有许多重要的知识点需要我们理解和掌握。
本文将介绍一些沪教版九年级上数学中的重要知识点。
一、比例与相似比例和相似是九年级上册数学的重要内容之一,在这个部分中,我们会学习比例的概念和运算,还会学习相似的概念和相似三角形的性质。
比例是一种比较两个量大小关系的方法,它可以表示为a:b或者a/b。
在比例中,a和b叫做比例的两个项,其中a叫做前项,b叫做后项。
比例还可以用比例式表示,例如a/b=c/d。
相似是指两个图形的形状相同,但是尺寸不同。
对于相似三角形来说,其对应的角相等,而对应的边的比例也相等。
相似三角形的性质包括比例定理、斜边比定理等。
二、平面图形与立体图形在九年级上册的数学中,还有一些关于平面图形和立体图形的知识点。
平面图形包括了多边形、圆、弧等,立体图形则包括了球、圆柱体、圆锥体、棱柱体等。
在学习平面图形时,我们需要理解各种多边形的性质,如正多边形、正凸多边形等。
此外,我们还需要学习如何计算多边形的周长和面积,以及圆和弧的相关计算。
对于立体图形来说,我们要掌握它们的表面积和体积的计算方法。
例如,计算球的表面积和体积,需要了解球的半径、直径等基本概念,以及相应的计算公式。
三、函数的应用函数是数学中的一个重要概念,也是九年级上册的数学中的重要内容之一。
我们需要学习函数的定义、函数的图象、函数的性质以及函数的应用等。
函数是指一种关系,它将一个集合中的每个元素都与另一个集合中的唯一元素对应起来。
函数的图象在坐标系中表示为一条曲线。
我们需要学习如何根据函数的定义和函数的图象来解决相关的问题。
函数的的应用广泛存在于我们的日常生活中,包括时间、速度、距离等各个方面。
我们可以通过函数的计算来解决这些问题,从而更好地理解和应用数学知识。
四、统计与概率统计与概率也是九年级上册数学的重要内容。
在这部分内容中,我们要学习如何进行数据的整理和统计,以及如何使用概率来描述事件发生的可能性。
九年级数学沪科上册知识点

九年级数学沪科上册知识点数学是一门抽象而又具有逻辑性的学科。
对于九年级的学生来说,数学的难度也逐渐加深。
在九年级上册的沪科数学课本中,有许多重要的知识点需要掌握和理解。
本文将介绍几个重要的知识点,并对其进行简要解释。
一、有理数的乘除运算有理数的乘除运算是九年级数学的重要内容之一。
乘法和除法是数学中最基本的运算。
在进行有理数的乘除运算时,我们需要注意符号的运用和分数化简。
例如,当两个有理数相乘时,符号的规则是:两个正数相乘得正数,一个正数和一个负数相乘得负数,两个负数相乘得正数。
而在相除运算中,我们需要记住:正数除以正数得正数,正数除以负数得负数,并且除以0是没有意义的。
二、平方根与立方根平方根与立方根也是九年级数学中的重要知识点。
平方根是指一个数的平方等于某一给定的数,而立方根则是指一个数的立方等于某一给定的数。
计算平方根和立方根可以通过开根运算符和立方根运算符来进行。
平方根和立方根的运算可以帮助我们解决一些面积、体积等相关问题。
三、几何图形的计算在九年级数学中,还有一些关于几何图形的计算问题需要我们掌握。
例如,如何计算矩形的面积和周长,如何计算圆的面积和周长等等。
对于这些问题,我们需要了解相应的公式和计算方法。
例如,矩形的面积可以通过长乘以宽来求得,圆的面积可以通过π乘以半径的平方来计算。
对于周长的计算,我们也需要知道相应的公式。
四、代数方程的解法九年级数学中,我们还要学习代数方程的解法。
代数方程是含有未知数的等式,通过解代数方程,我们可以求得方程中的未知数的值。
有几种常见的代数方程解法,如因式分解法、配方法和公式法等等。
在解代数方程时,我们需要根据具体的方程类型选择合适的解法,并运用相应的方法进行计算。
五、平面坐标系的应用平面坐标系是九年级数学中的一个重要概念。
平面坐标系是由两条相互垂直的坐标轴构成的,通过确定两个坐标轴上的数值,我们可以确定平面上的一个点的位置。
平面坐标系的应用可以帮助我们解决许多几何问题,例如,计算两点之间的距离、计算一个点关于坐标轴的对称点等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年九年级第一学期基础知识点汇总
第一章 相似三角形
知识点一:比例线段
关键点拨与对应举例
1. 比例
线段
在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即
a c
b d
=,
那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.
列比例等式时,注意四条线段的大小顺序,防止出现比例混乱. 2.比例
的基
本性质
(1)基本性质:a c
b d =⇔ ad =b
c ;(b 、
d ≠0)
(2)合比性质:a c b d =⇔a b b ±=c d
d
±;(b 、d ≠0)
(3)等比性质:
a c
b d ==…=m
n =k (b +d +…+n ≠0)⇔ ......a c m
b d n
++++++=k .(b 、d 、···、n ≠0)
已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若
35a b =,则a b b +=85
. 3.平行
线分线
段成比例定理
(1)两条直线被一组平行线所截,所得的对应线
段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DE
BC EF
=
. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,
要使DE ∥AB ,那么BC :CD 应等于5
3
.
(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.
即如图所示,若AB ∥CD ,则
OA OB
OD OC
=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.
如图所示,若DE ∥BC ,则△ADE ∽△ABC.
4.黄金分割
点C 把线段AB 分成两条线段AC 和BC ,如果AC
AB ==5-12
≈0.618,
那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.
例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .
知识点二 :相似三角形的性质与判定
5.相似三角
形的
判定 (1) 两角对应相等的两个三角形相似(AAA). 如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.
判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条
件中若有一对等角,可再找一对等角或再找
夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件
中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等
或找底、腰对应成比例.
(2) 两边对应成比例,且夹角相等的两个三
角形相似. 如图,若∠A =∠D ,
AC AB DF DE
=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如
图,若AB AC BC
DE DF EF
==,则△ABC ∽△DEF. F E D C
B A l 5
l 4
l 3l 2
l 1O
D
C
B
A
E
D C
B
A
F
E
D
C B A
F
E
D
C B
A
F
E D
C B
A
6.相似
三角形的性质(1)对应角相等,对应边成比例.
(2)周长之比等于相似比,面积之比等于相似比的平方.
(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于
相似比.
例:(1)已知△ABC∽△DEF,△ABC的周长
为3,△DEF的周长为2,则△ABC与△DEF
的面积之比为9:4.
(2) 如图,DE∥BC,AF⊥BC,
已知S△ADE:S△ABC=1:4,
则AF:AG=1:2.
7.相似三
角形的基本模型
(1)熟悉利用利用相似求解问题的基本图
形,可以迅速找到解题思路,事半功倍.
(2)证明等积式或者比例式的一般方法:经
常把等积式化为比例式,把比例式的四条
线段分别看做两个三角形的对应边.然后,
通过证明这两个三角形相似,从而得出结
果.
第二章解直角三角形
知识点一:锐角三角比的定义关键点拨与对应举例
1.锐角三角比正弦: sin A=
∠A的对边
斜边
=
a
c
余弦: cos A=
∠A的邻边
斜边
=
b
c
正切: tan A=
∠A的对边
∠A的邻边
=
a
b.
根据定义求三角函比时,一定根据题
目图形来理解,严格按照三角比的定
义求解,有时需要通过辅助线来构造
直角三角形.
2.特殊角的三角比
度数
三角比
30°45°60°sinA
1
2
2
2
3
2 cosA
3
2
2
2
1
2 tanA
3
3
1 3
:解直角三角形的应用
(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方
的角叫做俯角.(如图①)
(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡
比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)
(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和
一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:
(1)叠合式(2)背靠式
解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.
(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;
第三章二次函数
二次函数的应用。