乘除法的运算律和性质
有理数的乘除法

1.4 有理数的乘除法考点一:有理数的乘法(必考)考点深度解析1、有理数乘法法则 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0。
【特别提醒】①乘法法则中的“同号得正,异号得负”是专指两个数相乘。
有理数乘法的运算步骤为两步:先确定积的符号,再确定积的绝对值。
②乘法算式中的第一个负因数可以不带括号,但是后面的负因数必须带括号,例如-40×(-5)不能写成-40×-5。
③在进行乘法运算时,带分数要化成假分数,以便于约分。
2、倒数的概念倒数的概念:乘积是1的两个数互为倒数。
0没有倒数;若 a ≠0,那么a 的倒数是a1。
即a 与a 1互为倒数。
例如:3与13,―78与―87互为倒数。
【归纳拓展】①若ab=1,则 a 、b 互为倒数;若ab=-1,则 a 、b 互为负倒数.②倒数是它本身的数是±1;0没有倒数。
③求带分数的倒数时,要先把带分数化成假分数;求一个小数的倒数要先把小数化为分数。
④检验所求倒数的正确性的方法:原数与其倒数符号相同,并且二者乘积为1.3、有理数乘法法则的推广几个不是0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积是正数;当负因数的个数是奇数时,积是负数。
几个数相乘,如果其中有因数为0,那么积就是0.【典型例题】例题1 (从化月考)计算:(1)(-10)×(-13)×(-0.1)×6 ;(2)(-3)×56×(-145)×(-0.25);(3)(-5)×(-8.1)×3.14×0.解析:几个不是0的数相乘,首先确定积的符号,然后把绝对值相乘。
因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分。
几个数相乘,有一个因数为0,积就是0.解:(1)(-10)×(-13)×(-0.1)×6=-10×13×110×6=-2;(2)(-3)×56×(-145)×(-0.25)=-3×56×95×14=-98;(3)(-5)×(-8.1)×3.14×0.=0.答案:(1)-2;(2)-98;(3)0.4、有理数的乘法运算律有理数乘法的运算律:①乘法的交换律:一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
小学四年级数学知识点:乘除法加减法四则运算定律和性质

⼩学四年级数学知识点:乘除法加减法四则运算定律和性质运算定律和性质1、加法交换律:两个加数交换位置,和不变。
⽤字母表⽰:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
⽤字母表⽰:(a+b)+c= a +( b+c)3、减法的性质:⼀个数连续减去两个数,可以减去这两个减数的和。
⽤字母表⽰:a-b-c= a -( b+c) a -( b+c) = a-b-c4、⼀个数连续减去两个数,可以先减去第⼆个减数,再减去第⼀个减数。
⽤字母表⽰:a-b-c= a- c – b5、乘法交换律:两个因数交换位置,积不变。
⽤字母表⽰:a×b=b×a6、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
⽤字母表⽰:(a×b)×c= a ×( b×c)7、乘法分配律:两个数的和与⼀个数相乘,可以先把它们与这个数分别相乘,再相加。
⽤字母表⽰:(a+b)×c= a×c+b×c a ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×c a ×( b-c) =a×b-a×c8、除法的性质:⼀个数连续除以两个数,可以除以这两个除数的积。
⽤字母表⽰:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、⼀个数连续除以两个数,可以先除以第⼆个除数,再除以第⼀个除数。
⽤字母表⽰:a÷b÷c= a÷ c ÷b。
数学乘除法运算定律

数学乘除法运算定律嘿,你们知道吗?我觉得数学可有意思啦!尤其是那些乘除法运算定律,就像魔法一样神奇。
有一天,老师在课堂上给我们讲乘法交换律。
老师说:“两个数相乘,交换它们的位置,积不变。
” 这听起来有点难理解呢,不过老师举了个例子,一下子就让我明白了。
老师说:“就像你有两盒苹果,每盒有三个,那一共有六个苹果。
如果把这两盒苹果换个位置,还是每盒三个,总数还是六个苹果。
这就是乘法交换律。
” 哇,原来是这样啊!我一下子就记住了。
还有乘法结合律也很有趣。
老师说:“三个数相乘,可以先把前两个数相乘,再和第三个数相乘,也可以先把后两个数相乘,再和第一个数相乘,积不变。
” 老师又举了个例子:“假设有三个小朋友,每人有两本书,每本书有四页。
如果我们先算三个小朋友一共有多少本书,就是3×2 = 6 本,再算这 6 本书一共有多少页,就是6×4 = 24 页。
如果我们先算每本书有多少页,就是2×4 = 8 页,再算三个小朋友一共有多少页,就是3×8 = 24 页。
看,结果是一样的吧!这就是乘法结合律。
” 我听得津津有味,觉得数学真的好神奇啊!除法也有运算定律哦。
除法的性质就是一个数连续除以两个数,可以先把后两个数相乘,再用这个数除以它们的积。
老师举了个例子:“有 20 个苹果,要平均分给两个小朋友,每个小朋友可以得到10 个苹果。
如果再把这10 个苹果平均分给 5 个小朋友,每个小朋友可以得到 2 个苹果。
那我们也可以先算出两个小朋友一共有多少个苹果,就是2×5 = 10 个,然后用 20 个苹果除以10,也可以得到每个小朋友 2 个苹果。
这就是除法的性质。
”这些乘除法运算定律在我们的生活中也很有用呢。
比如,我们去买东西的时候,如果知道了商品的单价和数量,就可以用乘法算出总价。
如果知道了总价和数量,就可以用除法算出单价。
还有,如果我们要把一些东西平均分,也可以用除法来算。
四年级小学数学第5讲(乘除法运算定律)

第5讲运算定律(乘除法)学习锦囊一、知识要点1,乘法交换律:两个数相乘,交换因数位置积不变,字母公式a×b=b×a 2,乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,积不变,字母公式(a×b)×c= a×(b×c)3,除法定律:一个数连队以两个数等于这个数除以它们的积,字母公式(a÷b)÷c= a÷(b×c)二.方法推荐1,添括号去掉括号,括号前是乘号,括号里运算符号不变。
括号前是除号,括号里乘号变除号,括号里乘号变除号,除号变乘号2,添括号或去掉括号是为了凑整十,整百,整千……..快乐热身1,口算4×25= 5×2= 20×5= 125×8=25×8= 125×4= 24×5= 25×16=2,计算下列各题47×35 35×4720×6×5 20×5×6开心启动例1计算下列各题,用乘法的交换律进行验算65×17= 32×46=验算验算例2一个书柜有3层,每层放书25本,有这样的4个书柜,共放书多少本?例3学校买了4套桌椅,桌子每张75元,椅子每张25元,一共用去多少元?例4五年级每班有10个优秀学生,共5个班,现在有100个笔记本奖给这些同学,平均每个同学奖几个本子?列车维护1,填一填(a×b)×c=a×( × )36×()=45×()××(×)125÷25÷5=125÷(×)2,找朋友(连线)25×(4×17) 1000÷(125×8)(38×20)×5 6×10012×6+6×88 38×(20×5)1000÷125÷8 (25×4)×173,我能算算12×8×125 25×(100+4)27×13+73×13 270÷15÷2加速行驶1,我是小医生(1)24+24×5 改正=(24+1)×5=25×5=125(2)1260÷9÷7 改正=1260÷9×7=1230÷63=202,一个数是40,另一个数是4,它们现数和的25倍是多少?3,一个影院有30排座位,每排原来22个座位增加到时 28个座位,一共增加了多少个座位?挑战自我简算42×35+55×35+3×35 99×14+14。
四年级数学下册定义、定律、计算公式和法则

一、四则混和运算四则混合运算的顺序:在四则混合运算中:1.只有加减或只有乘除的运算,就从左至右依此计算;2.如果既有加减法又有乘除法,就要先算乘除,后算加减;3.如果有括号,就要先算括号里面的,再算括号外面的;4.如果既有小括号,又有中括号,就先算小括号里面的,再算中括号里面的,最后算括号外面的。
二、乘除法的关系和运算律乘除法的关系:一个因数=积÷另一个因数已知两个因数的积与其中的一个因数,求另一个因数,用除法。
除数=被除数÷商被除数=商×除数除法是乘法的逆运算 0不能作除数在有余数的除法里,被除数与商、除数、余数之间的关系:被除数=商×除数+余数除数=(被除数-余数)÷商一个整数除以另一个不为0的整数,商是整数,没有余数,我们就说一个数能被另一个数整除。
如:6÷2=3,就是6能被2整除,或者说2能整出6。
两个因数相乘,交换因数的位置,积不变,这就是乘法交换律。
如果用a,b 表示两个数,乘法交换律可以表示为: a×b=b×a三个数相乘,先乘前两个数或者先乘后两个数,积不变,这就叫乘法结合律。
如果用a,b,c表示3个数,乘法结合律可以表示为:(a ×b)×c=a×(b×c)两个数的和与一个数相乘,可以先把两个数与这个数分别相乘,再将两个积相加,结果不变,这叫做乘法分配律。
如果用如果用a,b,c表示3个数,乘法分配律可以表示为: (a+b) ×c= a ×c+ b×c:如,利用上面的运算定律,可以使计算简便,还可以用凑整法,分解法,一个数连续减两个数,等于这个数减两个数的和,等等。
因数与积的变化规律:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
一个因数扩大(或缩小)几倍,另一个因数也扩大(或缩小)几倍,积就扩大(或缩小)两个因数扩大(或缩小)的倍数之积。
乘除法运算律和性质

• 3.乘、除法混合运算的性质
• (1)在乘、除混合运算中,被乘数、乘 数或除数可以连同运算符号一起交换 位置。例如,
• a×b÷c=a÷c×b=b÷c×a。
• (2)在乘、除混合运算中,去掉或添加 括号的规则去括号情形:
• 括号前是“×”时,去括号后,括 号内的乘、除符号不变。即
• a×(b×c)=a×b×c, • a×(b÷c)=a×b÷c。
• 我们在第1讲中介绍了加、减法的 运算律和性质,利用它们可以简化一 些加、减法算式的计算。本讲将介绍 在巧算中常用的一些乘、除法的运算 律和性质,其目的也是使一些乘、除 法计算得到简化。
• 1.乘法的运算律 • 乘法交换律:两个数相乘,交换
两个数的位置,其积不变。即
• a×b=b×a。 • 其中,a,b为任意数。 • 例如,35×120=120×35=4200。
• (3)两个数之积除以两个数之积,可以 分别相除后再相乘。即
• 乘法结合律:三个数相乘,可以 先把前两个数相乘后,再与后一个数 相乘,或先把后两个数相乘后,再与 前一个数相乘,积不变。即
• a×b×c=(a×b)×c=a×(b×c)。
• 注意:
• (1)这两个运算律中数的个数可以推广 到更多个的情形。即多个数连乘中, 可以任意交换其中各数的位置,积不 变;多个数连乘中,可以任意先把几 个数结合起来相乘后,再与其它数相 乘,积不变。
• 括号前是“÷”时,去括号后,括 号内的“×”变为“÷”,“÷”变为 “×”。即
• a÷(b×c)=a÷b÷c,
• a÷(b÷c)=a÷b×c。
• 添加括号情形:
• 加括号时,括号前是“×”时,原 符号不变;括号前是“÷”时,原符号 “×”变为“÷”,“÷”变为“×”。 即
乘除法运算律教案

乘除法运算律教案教案标题:乘除法运算律教案教学目标:1. 理解乘法和除法的运算律;2. 能够运用乘法和除法的运算律解决实际问题;3. 培养学生的逻辑思维能力和数学推理能力。
教学内容:1. 乘法的运算律:a. 乘法交换律:a × b = b × a;b. 乘法结合律:(a × b) × c = a × (b × c);c. 乘法分配律:a × (b + c) = a × b + a × c。
2. 除法的运算律:a. 除法的定义:a ÷ b = c 表示 a 被 b 除后的商为 c;b. 除法与乘法的关系:a ÷ b = c 可以转化为a = b × c。
教学步骤:引入活动:1. 利用实际情境引入乘法和除法的运算律,例如:小明有3个苹果,他的朋友小红也有3个苹果,他们一共有多少个苹果?探究活动:2. 让学生自主发现乘法的运算律:a. 给学生两个乘法算式,例如:2 × 3 和3 × 2,让他们比较结果;b. 引导学生发现乘法交换律,并总结出乘法交换律的规律。
3. 引导学生自主发现乘法的结合律:a. 给学生三个乘法算式,例如:(2 × 3) × 4、2 × (3 × 4) 和2 × 3 × 4,让他们比较结果;b. 引导学生发现乘法结合律,并总结出乘法结合律的规律。
4. 引导学生自主发现乘法的分配律:a. 给学生两个乘法算式和一个加法算式,例如:2 × (3 + 4) 和2 × 3 + 2 × 4,让他们比较结果;b. 引导学生发现乘法分配律,并总结出乘法分配律的规律。
5. 让学生自主发现除法的运算律:a. 给学生一个除法算式,例如:12 ÷ 3 = 4,让他们思考如何用乘法表示这个算式;b. 引导学生发现除法与乘法的关系,并总结出除法的运算律。
整数的加减乘除法(知识点+练习)

一、整数四则运算定律1、加法交换律:a b b a+=+2、加法结合律:()()++=++a b c a b c3、乘法交换律:a b b a⨯=⨯4、乘法结合律:()()⨯⨯=⨯⨯a b c a b c5、乘法分配律:()b c a b a c a+⨯=⨯+⨯⨯+=⨯+⨯;()a b c a b a c6、减法的性质:()--=-+a b c a b c7、除法的性质:()÷⨯=÷÷;a b c a b c8、除法的“左”分配律:()-÷=÷-÷,a b c a c b c+÷=÷+÷;()a b c a c b c这里尤其要注意,除法是没有“右”分配律的,即()÷+=÷+÷是不成立的!c a b c a c b注:上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用。
二、加减法中的速算与巧算1、补数的定义:“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”。
2、凑整法:a、分组凑整法:把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数。
b、加补凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
三、乘法凑整先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=⨯=,81251000⨯=,520100乘法交换律:a×b=b×a乘法结合律:(a×b) ×c=a×(b×c)乘法分配律:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)四、乘、除法混合运算的性质1、商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠2、在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷3、在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).a b c a c b b c a ⨯÷=÷⨯=÷⨯4、在乘、除混合运算中,去掉或添加括号的规则去括号:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ①括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添括号:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ①两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷一、加法【例1】:278+463+22+37 732+580+268二、减法【例2】:2871-299 968-599举一反三:(1)157-99 (2)363-199三、连减(5种)【例3】:528-53-47 545-167-133举一反三:(1)489-134-76 (2)470-254-46【例4】:496-(296+144)354-(154+77)举一反三:(1)675-(175+89)(2)466-(66+125)【例5】:496-(144+296)354-(77+154)举一反三:(1)675-(89+175)(2)466-(125+66)【例6】:528-72-28 545-167-145举一反三:(1)489-77-389 (2)465-267-65【例7】:824-224-176-124 545-167-145举一反三:(1)643-164-133-243(2)487-187-139-61四、乘法分配律(8种)【例8】:计算:125×(80+32)(24+40)×25举一反三:(1)125×(64+80)(2)(80+32)×125(3)(16+32)×25【例9】:125×(100-8)(125-40)×8举一反三:(1)125×(100-48)(2)(100-16)×25【例10】:(1)117×56+117×44126×72+126×12+126×16举一反三:(1)269×26+74×269 (2)521×65+35×521【例11】:125×69-125×61 137×97-44×137-137×43举一反三:(1)25×127-25×119(2)365×251-365×151(3)156×59-156×27-156×22【例12】:45×102举一反三:(1)25×44 (2)125×168 (3)125×18【例13】:36×99举一反三:(1)45×98(2)125×92 (3)35×99【例14】:(1)81+9×391 (2)9+9×999 (3)99+9×99【例15】:(1)9×107-63(2)6×108-48 (3)134×101-134五、连除(2种)【例16】:1250÷25÷5举一反三:(1)2000÷125÷8(2)1280÷16÷8 (3)1300÷5÷20(4)840÷5÷8(5)1700÷25÷4 (6)4800÷50÷2【例17】:630÷(63×5)举一反三:(1)780÷(78×2)(2)1250÷(125×5)(3)6300÷(63×5)。