信号与系统试验----信号卷积

合集下载

实验报告信号卷积实验

实验报告信号卷积实验

一、实验目的1. 理解卷积的概念及其物理意义。

2. 掌握卷积运算的原理和方法。

3. 通过实验加深对卷积运算在实际应用中的理解。

二、实验原理1. 卷积的定义:卷积是一种线性运算,它描述了两个信号在时域上的相互作用。

对于两个连续时间信号f(t)和g(t),它们的卷积定义为:F(t) = ∫f(τ)g(t-τ)dτ其中,F(t)是卷积结果,f(τ)是信号f(t)的任意时刻的值,g(t-τ)是信号g(t)在时刻t-τ的值。

2. 卷积的性质:卷积具有交换律、结合律和分配律等性质。

其中,交换律是指f(t)和g(t)的卷积与g(t)和f(t)的卷积相等;结合律是指三个信号f(t)、g(t)和h(t)的卷积可以分别进行两两卷积后再进行一次卷积;分配律是指一个信号与两个信号的卷积等于该信号分别与两个信号卷积后的和。

三、实验内容1. 实验一:连续时间信号卷积实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为矩形脉冲信号,g(t)为指数衰减信号。

(2)卷积计算:根据卷积的定义,计算f(t)和g(t)的卷积F(t)。

(3)结果分析:观察F(t)的波形,分析卷积结果的物理意义。

2. 实验二:离散时间信号卷积实验(1)选用信号:选取两个离散时间信号f[n]和g[n],其中f[n]为单位阶跃信号,g[n]为矩形脉冲信号。

(2)卷积计算:根据离散时间信号卷积的定义,计算f[n]和g[n]的卷积F[n]。

(3)结果分析:观察F[n]的波形,分析卷积结果的物理意义。

3. 实验三:MATLAB仿真实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为正弦信号,g(t)为余弦信号。

(2)MATLAB编程:利用MATLAB的信号处理工具箱,编写程序实现f(t)和g(t)的卷积运算。

(3)结果分析:观察MATLAB仿真得到的卷积结果,分析其物理意义。

四、实验结果与分析1. 实验一:连续时间信号卷积实验(1)实验结果:通过计算得到f(t)和g(t)的卷积F(t)的波形。

信号与系统实验3信号的卷积信号

信号与系统实验3信号的卷积信号
e RC e( )d
0 RC
显然,上图电路系统等价于如下 LTI 系统,其中,x(t)= e(t)u(t),y(t)= Vc(t),
h(t)
1

e
1 RC
t
为系统的单位冲激响应。
RC
x(t)
h(t)
1
1t
e RC
y(t)
RC
其输入输出符合卷积运算: y(t) x(t) h(t) 。
数据处理分析: 方波
原图
频率调节后
幅度调节后
正弦波: K1 闭合
K1 断开
方波:K1 闭合 K1 断开 三角波:K1 闭合 K1 断开
实验结论:
该试验主要为信号的卷积验证试验,对输入的信号进行卷积后通过通过示波器将输 出信号显示出来,然后再通过与理论计算出的结果进行对比。经过实验基本与理论吻合。
五.实验步骤:
1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板 上的电源(看清标识,防止接错,)。
2、接通主板上的电源,同时按下本模块的电源开关 S1,S2,将“函数信号发生器” 模块中的输出通过导线引入到“零输入零状态响应”的输入端。(将“波形选择”拨到方 波 “频率调节”用于在频段内的频率调节,“占空比”用于脉冲宽度的调节,可改变以 上的参数进行相关的操作)。
指导教师批阅意见:
成绩评定:
备注:
指导教师签字: 年月日
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
二.实验仪器:
1、信号与系统实验箱一台(主板)。 2、系统时域与频域分析模块一块。 3、20MHz 示波器一台。

卷积信号实验报告

卷积信号实验报告

信号与系统上机实验报告一连续时间系统卷积的数值计算140224 班张鑫学号 14071002 一、实验原理计算两个函数的卷积卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当 t = n∆ t1 是r ( t )的值,则由上式可以得到:∆t足够小时,r(t2)就是e(t)和f(t)卷积积分的数值近似值由上面的公式可当1以得到卷积数值计算的方法如下:(1)将信号取值离散化,即以为周期,对信号取值,得到一系列宽度间隔为的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;(2)将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0时的卷积积分的值。

以为单位左右移动反转的信号,与另一信号相乘求积分,求的t<0和t>0时卷积积分的值;(3)将所得卷积积分值与对应的t标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。

1信号与系统上机实验报告一二、处理流程图三、C程序代码#include"stdafx.h"#include"stdio.h"//#include "stdilb.h"float u(float t){while (t>= 0) return(1);while (t<0) return(0);}float f1(float t){return(u(t+2)-u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)-u(t-4)));}int_tmain(int argc, _TCHAR* argv[]){FILE *fp;fp=fopen("juanji.xls","w+");float t,i,j,result=0;for(i=-2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i-j)*0.1;printf("%.1f\t%.2f\t",i,result);fprintf(fp,"%.1f\t%.2f\n",i,result);}printf ("\n");return 0;}四、运行结果五、卷积曲线六、感想与总结卷积是信号与系统时域分析的基本手段,主要用于求解系统的零状态响应。

信号与系统实验_卷积实验

信号与系统实验_卷积实验

学号: 姓名:实验四 信号卷积实验一、实验目的1、理解卷积的概念及物理意义;2、 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、预备知识1、学习卷积的基本特性三、实验原理卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)t (h *)t (x )t (y =()()x h t d τττ∞-∞=-⎰。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为12()()()f t f f t d τττ∞-∞=-⎰=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

0≤<∞-t210≤≤t 12≤≤t 41≤≤t ∞<≤t2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果四、实验内容1、两信号)t(x与)t(h都为矩形脉冲信号,由图解的方法给出两个信号的卷积过程和结果,以便与实验结果进行比较。

2、用matlab软件实现门信号的自卷积,并给出结果分析;方波与三角波的卷积:3、有能力的同学可以自编辑信号实现三角波的自卷积,并给出结果分析门信号自卷积:width=3; %定义门信号高度t=0:0.001:2;f1=rectpuls(t,width);%门信号f2=rectpuls(t,width);%门信号f=(conv(f1,f2))/1000;%门信号自卷积n1=(1:length(f1))/1000;n2=(1:length(f2))/1000;%%画图subplot(3,1,1);plot(n1,f1);axis([0,4.5,0,2]);title('输入方波');subplot(3,1,2);plot(n2,f2);axis([0,4.5,0,2]);title('输入方波');n=(1:length(f))/1000;subplot(3,1,3);plot(n,f);title('卷积结果');分析:①反褶;②当t<0时,被积函数为0,则f=0;③当0<t<1时,卷积的积分上限为t,积分下限为0,被积函数为1,则得f=t;④当1<t<2时,卷积的积分上限为1,积分下限为t,被积函数为1,则得f=1-t;⑤当2<t时,被积函数为0,则f=0;门信号与三角波卷积:clc,clear;width=1;t=0:0.001:2;f1=rectpuls(t,width);%门信号f2=sawtooth(10*pi*t,width)+1;%三角信号f=(conv(f1,f2))/1000;%卷积n1=(1:length(f1))/1000;n2=(1:length(f2))/1000;subplot(3,1,1);plot(n1,f1);axis([0,2,0,2]);title('输入方波');subplot(3,1,2);plot(n2,f2);axis([0,2,0,2]);title('输入三角波');n=(1:length(f))/1000;subplot(3,1,3);plot(n,f);axis([0,2,0,2]);title('卷积结果');三角波自卷积:clc,clear;width=1;t=0:0.001:2;f1=sawtooth(10*pi*t,width)+1;%产生三角信号1 f2=sawtooth(10*pi*t,width)+1;%产生三角信号2 f=(conv(f1,f2))/1000;%三角信号自卷积n1=(1:length(f1))/1000;n2=(1:length(f2))/1000;subplot(3,1,1);plot(n1,f1);axis([0,2,0,2]);title('输入三角波1');subplot(3,1,2);plot(n2,f2);axis([0,2,0,2]);title('输入三角波2');n=(1:length(f))/1000;subplot(3,1,3);plot(n,f);axis([0,2,0,2]);title('卷积结果');。

叙述信号与系统卷积的原理和过程

叙述信号与系统卷积的原理和过程

叙述信号与系统卷积的原理和过程
信号与系统中的卷积是一种基本的数学操作,用于描述信号在系统中的传输和处理过程。

它可以帮助我们理解信号如何通过系统进行相互作用和转换。

卷积的原理可以概括为:将两个函数重叠,并在重叠区域内进行乘法运算,然后对乘积结果进行积分得到输出函数。

具体过程如下:
1. 定义两个函数:输入信号(通常称为输入函数)和系统的冲激响应(通常称为脉冲响应),分别用x(t)和h(t)表示。

2. 将输入信号x(t)与系统的冲激响应h(t)进行反转和平移。

3. 反转和平移后的冲激响应用作乘积的权重。

4. 在重叠区域内,将反转和平移后的冲激响应h(t)与输入信号x(t)进行逐点乘积。

5. 对逐点乘积结果进行积分,得到输出函数y(t)。

这个过程可以用数学公式表示为:
y(t) = ∫[x(τ)⋅h(t-τ)]dτ
其中,x(t)表示输入信号,h(t)表示系统的冲激响应,y(t)表示输出函数,τ表示积分变量,乘号“⋅”表示乘法运算。

通过对输入信号和系统的冲激响应进行卷积运算,我们可以得到输出信号。

这个过程模拟了信号在系统中传输和处理的行为,能够帮助我们分析和预测系统的工作原理和性能。

信号与系统常用卷积

信号与系统常用卷积

信号与系统常用卷积
卷积是信号与系统领域中的一种重要运算。

它是将两个信号进行数学操作的方法,通常用符号 "*" 表示。

卷积运算可以以离散形式和连续形式进行。

离散卷积是指对离散时间信号进行卷积运算。

设有两个离散时间序列\[x[n]\]和\[h[n]\],卷积运算的结果\[y[n]\]可以表示为:
\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]\]
连续卷积是指对连续时间信号进行卷积运算。

设有两个连续时间信号\[x(t)\]和\[h(t)\],卷积运算的结果\[y(t)\]可以表示为:
\[y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\]
卷积运算的物理意义是对信号的相乘后再积分求和。

它在信号处理与系统分析中有广泛应用。

例如,卷积可以用于系统的响应预测、信号的滤波和信号的特征提取等。

在实际应用中,卷积运算可以通过离散求和或积分的方式进行计算。

计算机程序中常用的卷积算法包括直接法、快速卷积法(如快速傅里叶变换法)和卷积定理等。

总之,卷积是信号与系统分析中一种常用的运算方法,通过对信号的相乘与积分求和,可以得到新的信号。

在信号处理和系统分析中有广泛应用,为进一步深入研究相关领域奠定了基础。

北航信号与系统第一次实验报告超级详细版【范本模板】

北航信号与系统第一次实验报告超级详细版【范本模板】

信号与系统实验一连续时间系统卷积的数值计算实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法.实验原理()()()tototftoftf d21⎰∞∞--=卷积实验流程图源程序#include 〈stdio。

h〉float u(float t){while(t〉=0)return(1);while(t<0)return(0);}float f1(float t){return(u(t+2)—u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)—u(t-4)));}main(){float t,i,j,result=0;for(i=—2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i—j)*0。

1;printf("%.1f\t%.2f\t",i,result);}printf ("\n”);}实验数据—2。

0 0。

00 —1.9 0.01 —1.8 0。

03 —1。

7 0.06 -1。

6 0.10—1。

5 0.15 -1。

4 0。

21 —1.3 0。

28 -1。

2 0。

36 —1.1 0。

45-1.0 0.55 -0.9 0.66 -0。

8 0。

78 -0.7 0。

91 -0。

6 1。

05-0.5 1.20 -0.4 1。

36 -0.3 1.53 -0。

2 1.71 —0。

1 1.90 0.0 2.10 0。

1 2。

29 0。

2 2.47 0。

3 2。

64 0。

4 2。

800。

5 2。

95 0。

6 3.09 0.7 3.22 0。

8 3。

34 0.9 3。

451。

0 3。

55 1。

1 3。

64 1.2 3。

72 1.3 3.79 1。

4 3.85 1。

5 3。

90 1.6 3.94 1.7 3。

信号与系统实验指导

信号与系统实验指导
2、通过实验的方法加深对卷积运算的图解方法及结果的理解。
二、实验仪器
1、双踪示波器 1台
2、信号源及频率计模块S2 1块
3、数字信号处理模块S4 1块
三、实验原理
卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。设系统的激励信号为 ,冲激响应为 ,则系统的零状态响应为:
2、对实现无失真传输,对系统函数 应提出怎样的要求?
设 与 的傅立叶变换式分别为 。借助傅立叶变换的延时定理,从式4-1可以写出
(4-2)
此外还有 (4-3)
所以,为满足无失真传输应有
(4-4)
式(4-4)就是对于系统的频率响应特性提出的无失真传输条件。欲使信号在通过线性系统时不产生任何失真,必须在信号的全部频带内,要求系统频率响应的幅度特性是一常数,相位特性是一通过原点的直线。
线性系统的幅度失真与相位失真都不产生新的频率分量。而对于非线性系统则由于其非线性特性对于所传输信号产生非线性失真,非线性失真可能产生新的频率分量。
所谓无失真是指响应信号与激励信号相比,只是大小与出现的时间不同,而无波形上的变化。设激励信号为 ,响应信号为 ,无失真传输的条件是
(4-1)
式中 是一常数, 为滞后时间。满足此条件时, 波形是 波形经 时间的滞后,虽然,幅度方面有系数 倍的变化,但波形形状不变。
图6-1 连续信号抽样过程
将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图6-2所示。
2、连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱
它包含了原信号频谱以及重复周期为fs(f s = s/2л)、幅度按 Sa(m sτ/2)规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 实验目的
1. 理解卷积的概念及物理意义;
2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备
1.信号与系统实验箱 1台
2.双踪示波器
1台
三、实验原理
卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =⎰∞∞
--=ττd t h t x )()(。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:
⎰∞∞--=ττd t f t f t f )(2
)(1)(=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程
两信号)t (x 与)t (h 都为矩形脉冲信号,如图9-1所示。

下面由图解的方法(图9-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

0≤<∞-t
2
10≤
≤t 1
≤≤t 4
1≤
≤t ∞
<≤t 212
4
τ
(b)(a)(c)
(d)(e)
(f)
(g)
(h)(i)2卷积结果
2. 矩形脉冲信号与锯齿波信号的卷积
信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图9-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图9-2(c)所示。

图9-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果
3. 本实验进行的卷积运算的实现方法
在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

结果与模拟信号的直接运算结果是一致的。

数字信号处理系统逐步和完全取代模拟信号处理系统是科学技术发展的必然趋势。

图9-3为信号卷积的流程图。

图9-3 信号卷积的流程图
四、实验内容
1. 检测矩形脉冲信号的自卷积结果
用双踪示波器同时观察输入信号和卷积后的输出信号,把输入信号的幅度峰峰值调节为4V ,再调节输入信号的频率或占空比使输入信号的时间宽度满足表中的要求,观察输出信号有何变化,判断卷积的结果是否正确,并记录表9-1。

实验步骤如下:
(a)
(b)
(c)
② 连接P702与P101,将示波器接在TP101上观测输入波形,按下信号源模块上的按钮S701、S702,使信号频率为1KHz ,调节W701使幅度为4V 。

(注意:输入波形的频率与幅度要在P702与P101连接后,在TP101上测试。


③ 按下选择键SW102,此时在数码管SMG101上将显示数字,连续按下按钮,直到显示数字“3”。

④ 将示波器的CH1接于TP801;CH2接于TP803;可分别观察到输入信号的)(1t f 波形与卷积后的输出信号)t (f 1*)t (f 2的波形。

⑤ 按下S701,S702改变输入信号的频率,可改变激励信号的脉宽。

本实验中,采用的是矩形脉冲信号的自卷积,因此,在TP803上可观察到矩形脉, TP801上应可观测到一个三角波。

TP101的输入波形如下图:
输入信号的)(1t f 波形与卷积后的输出信号)t (f 1*)t (f 2的波形如下图:
改变输入信号的频率后,)(1t f 与)t (f 1*)t (f 2的波形如下图:
2. 信号与系统卷积
实验原理及步骤:
① 将跳线开关J702置于“脉冲”上。

② 连接P702与P101,将示波器接在TP101上观测输入波形,按下信号源模块上的按钮S701、S702,使信号频率为1KHz ,调节W701使幅度为4V 。

(注意:输入波形的频率与幅度要在P702与P101连接后,在TP101上测试。


③ 按下选择键SW102,此时在数码管SMG101上将显示数字,连续按下按钮,直到显示数字“4”。

④ 将示波器的CH1接于TP803;CH2接于TP802,首先观测两个卷积信号,TP803上测得的是激励信号)t (f 1;TP802测得的是系统信号)t (f 2(本实验中系统信号用的是锯齿波信号)。

再用示波器的CH2测TP801可观测到卷积后的输出信号)t (f 1*)t (f 2的波形。

⑤ 按下S701,S702改变输入信号的频率,可改变激励信号的脉宽。

在TP101上的波形如下图:
激励信号)t(f
1与系统信号)t(f
2
的波形如下图:
输出信号)t(f
1*)t(f
2
的波形如下:
五、实验结果
实验中可以发现当按下S701,S702改变输入信号的频率,激励信号的脉宽将改变。

该实验主要为信号的卷积验证实验,对输入的信号进行卷积后通过示波器将输出信号显示出来,然后再通过与理论计算出的结果进行对比。

经过实验基本与理论吻合。

相关文档
最新文档