信号与系统用定义计算卷积举例
卷积信号实验报告

信号与系统上机实验报告一连续时间系统卷积的数值计算140224 班张鑫学号 14071002 一、实验原理计算两个函数的卷积卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当 t = n∆ t1 是r ( t )的值,则由上式可以得到:∆t足够小时,r(t2)就是e(t)和f(t)卷积积分的数值近似值由上面的公式可当1以得到卷积数值计算的方法如下:(1)将信号取值离散化,即以为周期,对信号取值,得到一系列宽度间隔为的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;(2)将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0时的卷积积分的值。
以为单位左右移动反转的信号,与另一信号相乘求积分,求的t<0和t>0时卷积积分的值;(3)将所得卷积积分值与对应的t标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。
1信号与系统上机实验报告一二、处理流程图三、C程序代码#include"stdafx.h"#include"stdio.h"//#include "stdilb.h"float u(float t){while (t>= 0) return(1);while (t<0) return(0);}float f1(float t){return(u(t+2)-u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)-u(t-4)));}int_tmain(int argc, _TCHAR* argv[]){FILE *fp;fp=fopen("juanji.xls","w+");float t,i,j,result=0;for(i=-2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i-j)*0.1;printf("%.1f\t%.2f\t",i,result);fprintf(fp,"%.1f\t%.2f\n",i,result);}printf ("\n");return 0;}四、运行结果五、卷积曲线六、感想与总结卷积是信号与系统时域分析的基本手段,主要用于求解系统的零状态响应。
信号与系统第二章小结

信号与系统第二章 连续时不变系统的时域分析小结一、系统的初始条件)()()(t y t y t y zs zi +=,令-=0t 和+=0t ,可得)0()0()0(---+=zs zi y y y)0()0()0(++++=zs zi y y y对于因果系统,由于激励在0=t 时接入,故有0)0(=-zs y ;对于时不变系统,内部参数不随时间变化,故有)0()0(+-=zi zi y y 。
因此)0()0()0(+--==zi zi y y y)0()0()0(+-++=zs y y y同理)0()0()0()()()(+--==zi j zi j j y y y)0()0()0()()()(+-++=zs j j j y y y对于n 阶系统,分别称)1,,1,0)(0()(-=-n j y j 和)1,,1,0)(0()(-=+n j y j 为系统的-0和+0初始条件。
二、零输入响应)()()()()(01110111p D p N a p a p a p b p b p b p b t f t y p H n n n m m m m =++++++++==---- )(t y zi 满足算子方程0)()(=t y p D zi ,0≥t即零输入响应)(t y zi 是齐次算子方程满足-0初始条件的解。
)(t y zi 的函数形式与齐次解的形式相同。
简单系统的零输入响应1、)()()(t ce t y p p D t zi ελλ-=⇒+=2、)()()()()(102t e t c c t y p p D t zi ελλ-+=⇒+=三、单位冲激响应)()()(t ke t h p k p H t ελλ-=⇒+= )()()(t k t h kp p H δ'=⇒=)()()(t k t h k p H δ=⇒=)()()()(t kte t h p k p H t ελλ-=⇒+= 四、零状态响应)()()(t h t f t y zs *=五、完全响应)()()(t y t y t y zs zi +=六、卷积1、定义:⎰∞∞--⋅=*τττd t f f t f t f )()()()(21212、性质:交换律:)()()()(1221t f t f t f t f *=*结合律:)()]()([)]()([)(321321t f t f t f t f t f t f **=**分配律:)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+*时移性质:)()()(21t y t f t f =*,则)()()()()(0201021t t y t f t t f t t f t f -=*-=-*3、常用信号的卷积公式 )()()(t f t t f =*δ)()()(t f t t f '='*δ)()()()1(t f t t f -=*ε)()()(t t t t εεε=*)()1(1)()(t e at e t at at εεε---=* 七、例题例1已知某连续系统的微分方程为)(3)(2)(2)(3)(t f t f t y t y t y +'=+'+''若系统的初始条件1)0()0(='=--y y ,输入)()(t e t f t ε-=,求)(t y zi ,)(t y zs ,)(t y 。
离散卷积公式

离散卷积公式及其应用一、引言离散卷积公式是数字信号处理、图像处理等领域中的核心概念之一。
其重要性在于,它提供了一种有效的方式来描述两个离散信号之间的相互作用。
本文将深入探讨离散卷积公式的定义、性质、计算方法以及其在信号处理中的应用。
二、离散卷积公式的定义离散卷积公式定义为:对于两个离散序列x[n]和h[n],它们的卷积y[n]可以表示为:y[n] = ∑ x[k]h[n-k] (其中k从-∞到+∞求和)这个公式描述了一个信号x[n]通过一个线性时不变系统h[n]的响应。
这里,x[n]是输入信号,h[n]是系统的冲激响应,y[n]是输出信号。
三、离散卷积的性质1. 交换律:x[n]*h[n] = h[n]*x[n],即卷积满足交换律,改变输入和冲激响应的顺序不影响输出结果。
2. 结合律:x[n]*(h1[n]*h2[n]) = (x[n]*h1[n])*h2[n],即卷积满足结合律,可以通过多个冲激响应的连续卷积来得到最终的输出。
3. 分配律:x[n]*(h1[n]+h2[n]) = x[n]*h1[n] + x[n]*h2[n],即卷积满足分配律,可以将一个输入信号与多个冲激响应的和进行卷积,也可以分别与每个冲激响应进行卷积后再求和。
4. 卷积的微分与积分:若x[n]和h[n]都可微或可积,则它们的卷积y[n]也可微或可积,并且微分或积分运算可以与卷积运算交换顺序。
四、离散卷积的计算方法离散卷积的计算方法主要有两种:线性卷积和循环卷积。
线性卷积是按照卷积公式直接进行计算,而循环卷积则是利用离散傅里叶变换(DFT)进行计算。
具体步骤如下:1. 将输入序列x[n]和冲激响应序列h[n]分别补零至相同长度N。
2. 对补零后的序列进行N点DFT,得到X[k]和H[k]。
3. 将X[k]和H[k]相乘,得到Y[k]。
4. 对Y[k]进行N点逆DFT(IDFT),得到输出序列y[n]。
五、离散卷积在信号处理中的应用离散卷积在信号处理中有广泛的应用,如滤波、信号检测、图像处理等。
信号与系统

x(n) ∗ h1 (n) ∗ h2 (n) = x(n) ∗ h2 (n) ∗ h1 (n) x(t ) ∗ h1 (t ) ∗ h2 (t ) = x(t ) ∗ h2 (t ) ∗ h1 (t )
x[ n ] h1[ n ] x (t ) h1 (t ) y[ n ] h2 [ n ] y (t ) h2 (t )
x(t )
x(t )
例如:延时器是可逆的LTI系统,h(t ) = δ (t − t0 ) ,其逆系 例如:延时器是可逆的 系统, 系统 显然有: 统是 g (t ) = δ (t + t0 ) ,显然有:
1
2.分配律 2.分配律(the distributive property) 分配律
x[n] ∗ [h1[n] + h2 [n]] = x[n] ∗ h1[n] + x[n] ∗ h2 [n] x(t ) ∗ [h1 (t ) + h2 (t )] = x(t ) ∗ h1 (t ) + x(t ) ∗ h2 (t )
∞
t −ι
t
6
微分性质: ② 微分性质:若y(t)=x(t)*h(t),则 ,
y′(t ) = x(t ) * h′(t ) = x′(t ) * h(t )
两函数相卷积后的导数等于两函数之一的导数与另一函数相卷积。 两函数相卷积后的导数等于两函数之一的导数与另一函数相卷积。
d Proof: y ′(t ) = dt
h2 (t )
y(t ) = [ x(t ) ∗ h1 (t )] ∗ h2 (t )
y[n] = ( x[n] ∗ h1[n]) ∗ h2[n]
⇒
结论: 结论: 两个LTI系统级联时,系统总的单位冲激(脉冲 响应等于各 系统级联时, 脉冲)响应等于各 ①两个 系统级联时 系统总的单位冲激 脉冲 子系统单位冲激(脉冲 响应的卷积。 脉冲)响应的卷积 子系统单位冲激 脉冲 响应的卷积。
信号与系统第二章课件.

先假定逆系统的冲击响应的结果为hi1(t),然后经逐步修 正找到最终的hi(t) 。
很遗憾以上关于hi1(t)的假定,虽然可以消除δ(t)项, 却引入了新的a2 δ(t-2T)项。不过回波信号的强度衰减了, 而且时间延迟了,使干扰效果明显减弱。可进一步设
可见若逆系统的冲激响应hi1(t)若采用此结果,回 波信号的强度可以衰减至无穷小,而且时间可以延迟 至无穷远。 实际问题中,我们只须将延时补偿采用几项,就 可达到理想效果。
其中N变量指所有的回波路径。Tm、源自m表示各条路径的延迟 时间和衰减系数。当T较小且a较小时,形成所谓的“混响”。
根据以上分析,可以很容易写出回波系统的冲击响应
这样一般信号的响应,可以很容易根据卷积关系写为
为了从含有干扰信号的回波信号中取出正常信号,我们需设 计一个“逆系统”,其方框图如下。
接下来的工作是从上式求出hi(t),这样的问题是卷 积的反问题,称为解卷积。 对已连续时间系统,解卷积一般难以给出普适的公式,而 对于离散时间问题,§7.7给出了一般的解法。采用变换域 解法(如付里叶变换、拉普拉斯变换),也可较方便给出此问 题冲激响应(或者系统函数)的解法。 下面我们给出此问题的尝试解法。
信号与系统
§2.10用算子符号表示微分方程
采用算子符号可以简化微分、积分方程的计算,本节给 出算子符号的一些基本运算规则,然后通过实例说明此方法 的方便之处。 (一)算子符号的基本规则
(一)用算子符号建立微分方程 用算子符号建立系统的微分方程不仅书写简单,而且非 常方便。电感、电容的等效算子符号为:
实例:用算子符号建立电路微分方程
R1=1
Lp=(1/4)p
1/CP=1/p C R2=3/2
线性电路微分方程求解借鉴课本,P81
信号与系统 卷积积分的性质

信号与系统
d x t dt
h d
t
2
1
1 0
2
c
1
t
0
4
t
d
dxt t h d 15 dt 8
t
9 8
2
dxt t h d dt
3
1 0
2
2
6
1 0
2 3
6
t
f
e
信号与系统
t t t
[ 1 d ]u (t 1) [ 1 d ]u (t 2)
1 2
t
t
(t 1)u (t 1) (t 2)u (t 2)
(t 1)[u (t 1) u (t 2)] 3u (t 2) 0 t 1 3
0 t a 1 e d 1 e at 0 a
f t
1
1 d ]u(t ) 1 e at u t a
t 0
f d
t 0
t
e at
1 a
0
a
t
0
b
t
信号与系统
作业 13-4-16
t
y( )d f (t ) h( )d h(t ) f ( )d
t
y(t)的一重积分
y ( 1) (t ) f (t ) h( 1) (t ) f ( 1) (t ) h(t )
推广:
y ( m) (t ) f (t ) h( m) (t ) f ( m) (t ) h(t )
《信号与系统教学课件》§2.6 卷积及其性质和计算

将卷积的微分性质和积分性质加以推广,可以得到
s
t
nm
f (n) 1
t
f (m) 2
t
f (m) 1
t
f (n) 2
t
X
二、卷积的性质
注意函数的积分和微分并不是一个严格的可逆关系, 因为函数加上任意常数后的微分与原函数的微分是相 同的。因此,对于等式
f1 t
f2 t
f1' t
k
d
k
f
3
t
d
令w k
f1
k
f2
w f3
t
k
w d w d k
令st f2t f3t
f1 k s t k d k
f1 t st
f1 t
f2 t
f3 t
f 1
t f2 t
f3 t
X
二、卷积的性质
一、代数性质 • 结合律
对于函数f1 t , f2 t , f3 t ,存在
h2 t
r(t)
h1 t
图2.6.2 卷积交换律的系统意义
X
二、卷积的性质
一、代数性质
• 结合律
对于函数f1 t , f2 t , f3 t ,存在
f1 t f2 t f3 t f1 t f2 t f3 t
根据卷积的定义
f1 t
f2
t
f3
t
f1
k
f2
X
三、卷积的计算
根据卷积的定义,卷积计算是由若干基本的信号运算组成的, 对于
s
t
f1
f2
t
d
第一步 反褶:将 f1 t 反褶运算,得到 f1
信号与系统第9次课(卷积和)

3.3 卷积和
• 一、卷积和 • 二、卷积和的图示 • 三、卷积和的性质
复习:卷积和的定义
• 已知定义在区间( – ∞,∞)上的两个函数f1(k)和 f2(k),则定义和
与(k) 卷积和:
x(n) x(n) x(n)
h 1 (n) h 2 (n)
x1 (n) x2 (n) h 1 (n) * h 2 (n)
h 2 (n) h 1 (n)
y(n) y(n) y(n)
• 三个LTI系统响应相同
例子
• 例:一个LTI离散时间的输入输出关系如下图所:
x(n)
(1)
1
求和公式:S n
a0 an * q 1 q
再计算y(k)*x(k),同样考虑到u(k)的特性,可得
y (k ) x(k )
i k
y (i ) x(k i ) 1 (3) ( k i ) (k i )
i
i
(3)
系统输出为
y(n) x(n) * (n) x(n)
恒等系统
本章小结
1、LTI离散系统的响应 2、单位序列和单位序列响应 3、卷积和
• • • •
作业 3.11 (1) 3.18 熟悉并掌握例题3.3-3;3.3-4
第四章 傅里叶变换和系统的频域分析
本章提要 信号分解为正交函数 傅里叶级数和傅里叶级数的形式 傅里叶变换和傅里叶变换的性质 周期信号和非周期信号的频谱分析 周期信号的傅里叶变换 LTI系统的频域分析 抽样定理 序列的傅里叶分析