大学物理下练习册答案 ppt课件
大学物理练习册(下)答案解析

练习一1、C ,2、C ,3、C ,4、D,5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± ,6、()30220824R qdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 7、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强: ()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.8、解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220RQR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R Q E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R Q R Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以 j R Q j E i E E y x202επ-=+=练习二1、D ,2、C ,3、A ,4、C,5、不变、变,6、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0)7、解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2)过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 ()022εεkSbxdx kSS E E x==+'⎰xS P SEESSEd x b E 'd qR O xyθd θθPLdd q x (L+d -x )d ExO得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x = 6、解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得 210E E E +=在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ= 方向分别如图所示. 在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S '可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212dr E P ερ-= (1) 求O '点的场强'O E. 由图(a)、(b)可得 E O ’ = E 1O’ =03ερd, 方向如图(c)所示.(2) 设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r则3ερr E PO =, 03ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.练习三1、D ,2、B ,3、C,4、C,5、q / (6πε0R )6、负,增加7、解:由高斯定理可得场强分布为:E =-σ / ε0 (-a <x <a ) E = 0 (-∞<x <-a ,a <x <+∞=E 1P ρ PE 2P E P 图(d) O O ' P E 1O’ ρ 图(a) O ρO ' d E O’=E 1 图(c)O P E 2P -ρ O 'r E 2O’=0图(b)E 1P由此可求电势分布:在-∞<x ≤-a 区间⎰⎰⎰---+==000/d d 0d aa xxx x x E U εσ0/εσa -=在-a ≤x ≤a 区间 00d d εσεσxx x E U x x =-==⎰⎰ 在a ≤x <∞区间 0000d d 0d εσεσax x x E U a a x x =-+==⎰⎰⎰8、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+00024d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能: ⎪⎪⎭⎫ ⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ练习四1、D ,2、D ,3、B ,4、C ,5、U C C C C C q U C C C C C 21212221211)(,)(+-=+-,6、r εεσσ0,, 7、解:金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8、解:令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ∵ AB AC U U =,即-a +a O x UO R x r 0 r 0+ld xx∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV练习五1、πR 2c2、 5.00×10-5 T , 3、20d 4a lI πμ , 平行z 轴负向 ; 4、)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I+μ ,12arctg R R +π21,5、)3231(40ππμ-+R I , 6、C, 7、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l R II d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R I R I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B51037.6-⨯= T8、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a a r r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内. r r I r p m d 21d d 22λω=π=⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内.练习六1、B2、)2(120I I -μ3、320μI , 4、Rihπμ20,5、)2/(210R rI πμ ,0 6、解:取同轴闭合圆环r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(a b Ia r I ππππ--=∑∴ )(2)(22220a b r a r I B --=πμ 7、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+IμOarbd r ω1、A ,2、B ,3、)/(cos 2eB m θv π, )/(sin eB m θv ,4、alB 2,5、铁磁质,顺磁质,抗磁质,6、 0.226 T ,300 A/m7、解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J 8、解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰1、D ,2、C ,3、A ,4、0.40 V , 0.5 m 2/s ,5、 5×10-4 Wb ,6、解:2IB xμπ=ln 22d adIl Id a ldx x dμμππ++Φ=⋅=⎰0l n c o s 2N I l d d a Nt dt dμωεωπΦ+=-=- 7、解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.练习九1、28/104.0s m ⨯顺时针 2、 πBnR 2 ,O 3、dtdBR221π, 4、等于零,不等于零;不等于零,等于零 5、RBfr 22π6、解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ 7、解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →练习十1、C ,2、C ,3、0,4、 垂直纸面向里 , 垂直OP 连线向下 ,5、(4)(2)(1) 5、解:圆柱形电容器电容 12ln 2R R lC πε=12ln 2R R lUCU q πε== 1212ln ln 22R R r U R R r lU S q D εππε===∴ 12ln R R r ktDj ε=∂∂=6、如图10-17图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ练习十一1、A2、 B3、B ,4、D ,5、2π (n -1) e / λ , 4×103 ;6、解: (1)由λk d D x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm7、解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有 r 2-r 1=k λ所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处练习十二1、A ,2、 C ,3、C ,4、 1.40 ,5、0.6mm 。
大学物理下----练习ppt课件

x2
0.1cos( t
)(m)
3
-A
A
26
(3)若两简谐运动叠加,求合振动的运动方程。
合运动仍为简谐运动,
x Acos(t )
A A12 A22 2A1A2 cos
2
1
5 6
A
A12
A22
2 A1 A2
cos
5
6
0.052m
tan A1 sin 1 A2 sin 2 0.268,
2
15
9.24 劲度系数为k的轻弹簧,系一质量为m1的物体,在水平面 上作振幅为A的简谐运动。一质量为m2的粘土,从高度为h处 下落,正好在(a)物体通过平衡位置时,(b)物体在最大位 移处时,落在物体上。分别求(1)振动周期有何变化? (2)振幅有何变化?
T 2 k
m
粘土下落前,0
k m1
3
x 2.0102 cos(4t 2 )(m)
3
Ax Ax
6
9.13 一弹簧,当其下端挂一质量为m的物体时,伸长量为
9.8102 m ,若使物体上下振动,且规定向下为正方向。
(1)当t=0时,物体在平衡位置上方 8.0102 m 处,由静
止开始向下运动,求运动方程。(2)当t=0时,物体在平
衡位置并以0.6 m / s的速度向上运动,求运动方程。
' k
m1 m2
A'
x20
(v0 )2
v'
'
m1 A m1 m2
17
A' A
(b)物体在最大位移处时,
v0
与粘土发生碰撞后,由动量守恒得:
v' 0
A'
吉林大学 大学物理下练习册答案PPT课件

11
(三) 计算题
1. 一倔强系数为k的轻弹簧,竖直悬挂一质量为m的物
体后静止,再把物体向下拉,使弹簧伸长后开始释放, 判断物体是否作简谐振动?
解: 仍以平衡位置处为坐标原点,设平衡时弹簧
伸长量为x0,则有
mg kx0
物体在坐标为x处时,根据牛顿第二定律
mg
x 0
m ax
A kM mM
A
A M A E 1 k M A2 E
M m
2 Mm
15
4. 一物体质量为0.25kg,在弹性力作用下作简谐 振动,
弹簧的倔强系数 k = 25 Nm-1,如果起始振动时具有
势能0.06J和动能0.02J,求: (1) 振幅; (2) 动能恰好等于势能时的位移; (3) 经过平衡位置时物体的速度。
8. 当质点以f 频率作简谐振动时,它的动能的变化频率
为
A. f B. 2 f C. 4 f D. 0.5 f
9. 两个振动方向相互垂直、频率相同的简谐振动的合成
运动的轨迹为一正椭圆,则这两个分振动的相位差可能Leabharlann 为A.0或 π
B.
0或 3π
C.
0或π D.
3π 或 π
2
2
22
10. 竖直弹簧振子系统谐振动周期为T,将小球放入水
T 2π M k
0
k M
m
小物体未下落后系统的振动周期为
M
T 2π
M m T k
k M m
14
(1) x A 0
m
碰撞后速度 x A 0
碰撞后振幅不变,能量不变
大学物理习题答案(下学期有图)

⼤学物理习题答案(下学期有图)1. (C)2.a4I0πµ, ? 3.)412(R 2I 0ππµ+-, ?4. 可看成许多平⾏的⽆限长载流直导线组成,其中⼀宽为θRd dl =的直导线载有电流dl RIdI π=θθπµθπd sin R2I)2cos(dB dB 20x -=+=-=-=ππµθθπµ02020x RI d sin R 2I Bθθπµθπd cos R 2I )2sin(dB dB 20y =+= 0d cos R2I B 020y ==?πθθπµ )T (i1037.6i RI B 620O -?-=-=πµ5. 将此盘看成⽆数同⼼带电圆环组成,半径为r的圆环带电rdr2dq πσ?=圆环转动形成的电流为rdr dq 2dI ωσπω==则 dr r dI dB ωσµµ00212== 各B d 同向R 21dr 21dB B 00Rσωµωσµ===∴??1. (B)2. 变量,I οµ-3. 1∶1, 304. 在横截⾯上以轴点为圆⼼,作半径为r 的圆形环路则(1) a r < ?=?Ll d B 0, 0=∴B(2) b r a << I a b a r rB l d B L )()(22222--==??ππµπο , ra b Ia r B )(2(22)22--=∴πµο (3) b r <I rB l d B L==?οµπ2,rIB πµο2=∴ 5. 取电流元 dI=(I/b)dx则 )x r b (b 2Idx)x r b (2dIdB 00-+=-+=πµπµrbr lnb 2I )x r b (b 2IdxB b00+=-+=?πµπµ ⽅向向⾥练习三(磁)1.(B )2. 03. 1∶14.取⾯积元xdx ahydx dS ==,它距长直载流导线为(b+x ) m d φ=S d B ?=xdx ahx b I+)(2πµο=dx xb ba hI )1(2+-πµο∴ m φ=?m d φ=ahIπµο2dx xb ba)1(0+-=ahI πµο2[b ab ln b a +-]5. 在横截⾯上以轴点为圆⼼作半径为r 的圆形环路,由环路定理可得:R r < 222r R I rB ππµπο= r R I B 22πµο=内R r ≥ I rB οµπ=2 rIB πµο2=外矩形纵截⾯外内S S S +=,其总磁通量为:+?=S 外S 内m S d B S d Bφ)m 1l (2ln 212I ldr r 2I ldr R2Ir R 2R 0R20=+=+=)(πµπµπµο练习四(磁)1. (D)2. (B)3. (B)4. AB 处的B )6a3b (2IB AB -=πµο,?,受⼒)6a3b (2aI I F 211-=πµο, ⽅向AB ⊥向左1I 在BC 上与1I 相距x 的电流元l d I 2处的xIB πµο21=,?,由B l d I F=22 及 2330cos dxdx dl ==得 6a 3b 3a 3b ln 3I I 23dx x 2I I F 21a 33b a63b 212-+=?=+-πµπµοο⽅向:在?平⾯⾥BC ⊥向外同理知23F F =,CA F ⊥3向外(在?平⾯⾥)。
大学物理下册练习与答案

I电磁学DC7・ 1 |如图所示,一电子经过Uo = 1 >10 7m / s o(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场 大小和方向;(2) 求电子自A 运动到C 所需的时间。
9解:(1)电子所受洛仑兹力提供向心力 evoB = m —Rmv o 9.1 lx 10~ x IX 10 ?3_得出 B 二 = _i9= 1./10 TeR 1 .6X 10 - x 0 .05磁场方向应该垂直纸面向里。
(2) 所需的时间为 t =# =药-=兀0. 05 = 1 .6 X 10 rs22 vo l x 107血工地2.0怡2的一个正电子,射入磁感应强度B 二0.1T 的匀强磁场中,其速 度矢量与B 成89角,路径成螺旋线,其轴在B 的方向。
试求这螺旋线运动的周 期T 、螺距h 和半径r o解:正电子的速率为I /XX X X - v ==1 ------- 2~~10 ' 110 19 = 2 .6x 10 7 m/s* m *9.1 1X 10做螺旋运动的周期为2 Jim 2 K X 9.1 丈 1(T 31T = ---------- = -------------- --- --------- = 3 ,6X 10 SeB 1 .6X 10一 X 0.1螺距为 h = vcos 89 °T =2.6 * 10 7 X cos 89 0 :<3. 6 X 10 10 = 1 .6^ lO^m317ZX _X X X_丰径为 r = mv sin 89 = 9.11 ~F02 .6⑴ TO Sih 89 = 1 .5 ^103 Hlx — xeBL6 10'0.1磁力A 点时,具有速率V0 /0 10cmA h -----------------DC7・3加1图所示,一铜片厚为d二1.0mm,放在B=1.5T的磁场中,磁场方向与铜片表面垂直。
已知铜片里每立方厘米有8.4^ 1022个自由电子,每个电子的电荷C - = -1.6 19T,当铜片中有I=200A的电流流通时,(1)求铜片两侧的电势差Uaa' ;(2)铜片宽度b对Uaa,有无影响?为什么?/// B i ////Z/-------- 28 — = -2.23 X 10_ V,8/ 10X「1.6 ¥o f X 1 .0 X 10一负号表示『侧电势高。
《大学物理下》课件

这是一份关于《大学物理下》的PPT课件,旨在介绍物理的重要性以及本课程 的目的和主题。
本课程概述
1 课程目标和学习内容
2 课程结构和安排
探索力学、热学、光学和电磁学等基础物 理概念,以及这些概念在实践中的应用。
按照模块化设计,每个模块都包含理论和 实践部分,以帮助学生全面理解和掌握物 理知识。
基础物理概念
力学
研究物体的运动和力的作用,包括牛顿定律、 动量和能量等基本概念。
热学
探索热传导、热能和温度等热学现象,以及 热力学定律和热力学过程。
光学
研究光的传播和光学现象,包括光的反射、 折射和干涉等基本知识。
电磁学
了解电荷和电场、磁场和电磁波等电磁学概 念,以及电磁感应和电磁辐射。
实践应用
提供实验室设备,如显 微镜、天平和光学仪器, 以帮助学生进行实践和 实验。
介绍在线学习资源和网 站,如物理学习平台和 学术论坛,以拓宽学生 的学习渠道。
结语
学习物理,拓展思维,探索世界的奥秘。
总结课程内容和重点,鼓励学生继续学习和探索。物理是一门充满挑战和奇 迹的学科。
物理在日常生活中的应用
物理在工程和技术中的应用
探索物体的运动和力学概念在日常生活中的应用, 例如交通运输、运动和游戏等。
了解物理在各种工程和技术领域中的应用,如建 筑、电子和航天工程等。
学习资源和工具
1 课本和参考书籍
推荐使用《大学物理教 材》和相关物理参考书 籍,以加深对物理概念 的理解。
2 实验室设备和工具 3 在线学习资源和网站
《大学物理(下)》课件及习题

《大学物理(下)》课件及习题一、教学内容本节课的教学内容选自《大学物理(下)》的第四章,主要涉及电磁学的基本概念和定律。
具体包括:电磁感应现象、法拉第电磁感应定律、楞次定律、电磁场的基本方程、安培环路定律和麦克斯韦方程组。
二、教学目标1. 使学生理解电磁感应现象和法拉第电磁感应定律,掌握楞次定律,能够运用这些基本原理分析和解决实际问题。
2. 帮助学生掌握电磁场的基本方程,理解安培环路定律和麦克斯韦方程组的物理意义。
3. 培养学生的科学思维能力和创新意识,提高学生分析问题和解决问题的能力。
三、教学难点与重点1. 教学难点:电磁感应现象的直观理解,法拉第电磁感应定律和楞次定律的应用,麦克斯韦方程组的推导和理解。
2. 教学重点:电磁感应现象的基本原理,法拉第电磁感应定律和楞次定律的掌握,电磁场基本方程的应用,安培环路定律和麦克斯韦方程组的理解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、实验器材(如电流表、电压表、磁铁、线圈等)。
2. 学具:教材《大学物理(下)》、笔记本、笔、计算器。
五、教学过程1. 实践情景引入:通过展示一个电磁感应实验,让学生观察和体验电磁感应现象,激发学生的兴趣和好奇心。
2. 讲解电磁感应现象:解释电磁感应现象的原理,阐述法拉第电磁感应定律和楞次定律的内容和意义。
3. 示例讲解:通过示例题目,讲解如何运用法拉第电磁感应定律和楞次定律分析和解决问题。
4. 电磁场基本方程:推导和讲解电磁场的基本方程,包括高斯定律、安培定律和法拉第电磁感应定律。
5. 麦克斯韦方程组:推导和讲解麦克斯韦方程组,解释其物理意义。
6. 课堂练习:给出一些实际问题,让学生运用所学的知识和方法进行分析和解答。
六、板书设计1. 电磁感应现象2. 法拉第电磁感应定律3. 楞次定律4. 电磁场基本方程5. 安培环路定律6. 麦克斯韦方程组七、作业设计1. 题目:一个闭合回路中的电流变化,求回路中的电磁感应电动势。
大学物理下 电磁感应习题册讲解PPT课件

dR
2 r 2
故金属圆盘中的总涡流为
i i di 1 kb a rdr 1 kba2
0
2
0
4
第17页/共24页
5.一个n匝圆形细线圈,半径为b,电阻为R,以匀角 速绕其某一直径为轴而转动,该转轴与均匀磁场 B
垂直。假定有一个面积为A(很小)的小铜环固定在该转
动线圈的圆心上,环面与磁场垂直,如图所示,求在小铜
第2页/共24页
4.在圆柱形空间内有一磁感应强度为 B 的均匀磁场, 先B 后的放大在小磁以场速的率两dB个/ d不t 变同化位。置有1(一a长b)度和为2l0(的a金b属)棒,
则金属棒在这两个位置时棒内的感应电动势的大小 关系为
(A) ab ab (B)ab ab (C)ab ab 0 (D) ab ab 0
的恒定速率减小。当电子分别位于磁场中a点、b点与
c点时,假定a,c的r = 0.5m,求电子获得的瞬时加速
度的大小和方向。
答案:(1)aa 4.4 104 (ms2 ) 方向水平向左
(2) (3)
ab 0
ac 4 4 104 (ms2 )
a
r b R
B r
c
方向水平向右。
图5-10
d dvta I b (r d vt)dr
d vt 2 r a
Ib Ib (d vt) ln d vt a
2 2 a
d vt
d Ibv (ln d a a )
dt t0 2a
d da
方向顺时针
第21页/共24页
例 一截面为长方形的螺绕环,尺寸如图,共有N 匝,求其自感系数。
(2)PQ边: 1 0
P
S
PS边:2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. 振子仍作简谐振动,且ppt周课件期仍为T;
6
D. 振子不再作简谐振动。
(二) 填空题
1.已知谐振动方程为 x1 Acos(t ),振子
质量为m,振幅为A,则振子最大速度为___A__,
最大加速度为___2_A__,振动系统总能量为
_能12_为_m___14__2m__A__2_,_2平A。2均动能为41__m___2_A,2 平均势
运动的轨迹为一正椭圆,则这两个分振动的相位差可能
为
A.
0或 π
B.
0或 3π
C.
0或π D.
3π 或 π
2
2
22
10. 竖直弹簧振子系统谐振动周期为T,将小球放入水中,
水的浮力恒定,粘滞阻力及弹簧质量不计,若使振子沿
竖直方向振动起来,则
A. 振子仍作简谐振动,但周期<T;
B. 振子仍作简谐振动,但周期>T;
解:仍以平衡位置处为坐标原点,设平衡时弹簧
伸长量为x0,则有
mg kx0
物体在坐标为x处时,根据牛顿第二定律
mg
k( kx
x x0 ) m d2
x
m
d2x dt 2
整理得
d2x dt 2
dt 2
x 0 2 ppt课件
结论:该物体仍 然作简谐振动 12
2. 质点沿x轴作简谐振动(平衡位置为x轴的原点),振幅为
2
3. 质点作周期为T,振幅为A的谐振动,则质点 由平衡位置运动到离平衡位置A/2处所需的最短 时间是: ( )
A.T/4 B.T/6 C.T/8 D.T/12
4. 一质点在x轴上做谐振动,振幅A=4cm,周 期T=2s,其平衡位置取作坐标原点,若t=0时 刻质点第一次通过x=-2cm处,且向x轴正方向 运动,则质点第二次通过x=-2cm处时刻为
A = 30 mm,频率 6Hz 。
(1) 选质点经过平衡位置且向x轴负方向运动时为计时零
第十章 振 动
(一)选择题 1. 两个相同的弹簧,一端固定,另一端分别悬
挂质量为m1、 m2 的两个物体。若两个物体的 振动周期之比为 T1:T2= 2:1,则 m1:m2= ( )
A. 2 : 1 B. 4 : 1
C. 1:4 D. 1 : 2
ppt课件
1
2. 两个质点各自做简谐振动,它们的振 幅 相 同。
第 一 个 质 点的振动方程 x1 Acos(t ) ,当
第一个质点从相对平衡位置的正位移回到平衡位
置时,第二个质点在正最大位移处,第二个质点
的振动方程为:( )
A. B.
x2 x2
A cos (t A cos (t
π) π2 ) 2
C.
x2
A cos (t
3π ) 2
D. x2 Acos(t ppt课件 π)
9
7. 上面放有物体的平台,以每秒5周的频率沿竖直方向
作简谐振动,若平台振幅超过__1_c_m___,物体将会脱离
平台。(g=9.8m/s2)
8. 两个同方向同频率的简谐振动,其合振动的振幅为
20cm,与第一个简谐振动的相位差为 1 π 6
若第一个简谐振动的振幅为 10 3cm 17.3cm 。则第
(2)振子在平衡位置向正方向运动,则初相位为
__-_π__2。
(3)振子在位移A/2处,向负方向运动,则初相位
为__π_3__。
6. 将复杂的周期振动分解为一系列的
简__谐__振__动__之__和__,从而确定出该振动包含的频
率成分以及各频率对应的振幅的方法,称为
__频__谱__分__析___。
ppt课件
4.两个相同的弹簧以相同的振幅作谐振动,当挂 着两个质量相同的物体时其能量__相__等___,当挂 着两个质量不同的物体仍以相同的振幅振动,其 能量__相__等____,振动频率__不__等____。
ppt课件
8
5. 一弹簧振子作简谐振动,振幅为A,周期为T,
运动方程用余弦函数表示,若t=0时,
(1)振子在负的最大位移处,则初相位为__π___。
二个简谐振动的振幅为___1_0_c_m___cm。第一、二个简
谐振动的相位差1 2为____π_/_2_____。
ppt课件
10
9. 一简谐振动的旋转矢量图如图所示,振幅矢量
长2cm,则该简谐振动的初相位为___π_/_4___,矢
量振动方程为_x____0_.0_2_c_o__s_(π_t___π。/4)
2. 一简谐振动的表达式为x Acos(3t ) ,
已知t=0时的位移是0.04 m,速度是0.09m·s-1。
则振幅A=_0_.0_5__m,初相=___3_7_0 。
ppt课件
7
3. 无阻尼自由简谐振动的周期和频率由_系__统___所 决定,对于给定的简谐振动,其振幅、初相由 __初__始__状__态____ 决定。
t时刻
πt π / 4 t 0 π/4
x
10. 物体的共振角频率与系统自身性质以及 __阻__尼__大__小___有关。系统的____阻__尼____越大,
共振时振幅值越低,共振圆频率越小。
ppt课件
11
(三) 计算题
1. 一倔强系数为k的轻弹簧,竖直悬挂一质量为m的物 体后静止,再把物体向下拉,使弹簧伸长后开始释放, 判断物体是否作简谐振动?
B. 物体位于平衡位置向负方向运动时,速度和加速度都 为零
C. 物体位于平衡位置且向正方向运动时,速度最大,
加速度为零;
ppt课件
5
D. 物体处在负方向的端点时,速度最大,加速度为零。
8. 当质点以f 频率作简谐振动时,它的动能的变化频率 为
A. f B. 2 f C. 4 f D. 0.5 f
9. 两个振动方向相互垂直、频率相同的简谐振动的合成
6
D. 振幅等于1cm, 初相等于 π
6
ppt课件
4
6. 一质点作简谐振动,振动方程为
x Acos(t )
当时间t=T/2(T为周期)时,质点的速度为
A. A sin B. A sin
C. A cos D. A cos
7. 对一个作简谐振动的物体,下面哪种说法是正确的
A. 物体处在运动正方向的端点时,速度和加速度都达 到最大值;
A.1s
B.3s/2 C.4s/3
ppt课件Dຫໍສະໝຸດ 2s35. 一质点同时参与两个在同一直线上的谐振动,
其振动方程分别为
x1
4
cos(2t
π 6
),
x2
3 cos(2t
7π ) 6
则关于合振动有结论:( )
A. 振幅等于1cm,初相等于 π
B.
振幅等于7cm,初相等于
4π 3
C. 振幅等于1cm,初相等于 7 π