理论力学第三章刚体力学课件
合集下载
大学物理教程课件讲义刚体力学基础

图3.13 例3.4图
3.2 刚体的定轴转动定律
例3.5 一根长为l,质 量为m的均匀细杆,可绕通过 其一端且与杆垂直的光滑水 平轴转动,如图3.14所示, 将杆由水平位置静止释放, 求它下摆到角度为θ 时
的角加速度和角速度。
图3.14 例3.5图
3.2 刚体的定轴转动定律
3.3 刚体定轴转动的角动量定理 角动量守恒定律
3.4 刚体定轴转动的动能定理
3.4.5
1.刚体定轴转动的功能原理
如果刚体在定轴转动中除受到外力矩外,还受到 保守力矩的作用,而在刚体的定轴转动中,涉及的势 能主要是重力势能。所以,保守力只考虑重力,当系 统取地球和刚体时,式(3-22) 可写为
3.4 刚体定轴转动的动能定理
3.4 刚体定轴转动的动能定理
3.2 刚体的定轴转动定律
图3.12 平行轴定理
3.2 刚体的定轴转动定律
以上例子是根据转动惯量的定义式(3-5)计算规则几 何形状的刚体的转动惯量,对于几何形状较复杂的刚体通 常要用实验测定。表3.1列出几种几何形状简单、规则、密 度均匀的物体对通过质心的不同转轴的转动惯量。
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
3.2.3 力对转轴的力矩
图3.9 转动定律
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
由转动定律的表达式M=Jβ可以看出,在相同的外力矩作 用下,刚体的转动惯量J越大,刚体所获得的角加速度β越小, 则刚体的转动状态不易改变;刚体的转动惯量J越小,刚体所获 得的角加速度β越大,刚体的转动状态容易发生变化。转动惯 量J是和质量m相对应的物理量,物体的质量m是质点的平动惯性 的量度,而刚体的转动惯量J是刚体转动惯性的量度。
3.2 刚体的定轴转动定律
例3.5 一根长为l,质 量为m的均匀细杆,可绕通过 其一端且与杆垂直的光滑水 平轴转动,如图3.14所示, 将杆由水平位置静止释放, 求它下摆到角度为θ 时
的角加速度和角速度。
图3.14 例3.5图
3.2 刚体的定轴转动定律
3.3 刚体定轴转动的角动量定理 角动量守恒定律
3.4 刚体定轴转动的动能定理
3.4.5
1.刚体定轴转动的功能原理
如果刚体在定轴转动中除受到外力矩外,还受到 保守力矩的作用,而在刚体的定轴转动中,涉及的势 能主要是重力势能。所以,保守力只考虑重力,当系 统取地球和刚体时,式(3-22) 可写为
3.4 刚体定轴转动的动能定理
3.4 刚体定轴转动的动能定理
3.2 刚体的定轴转动定律
图3.12 平行轴定理
3.2 刚体的定轴转动定律
以上例子是根据转动惯量的定义式(3-5)计算规则几 何形状的刚体的转动惯量,对于几何形状较复杂的刚体通 常要用实验测定。表3.1列出几种几何形状简单、规则、密 度均匀的物体对通过质心的不同转轴的转动惯量。
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
3.2.3 力对转轴的力矩
图3.9 转动定律
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
由转动定律的表达式M=Jβ可以看出,在相同的外力矩作 用下,刚体的转动惯量J越大,刚体所获得的角加速度β越小, 则刚体的转动状态不易改变;刚体的转动惯量J越小,刚体所获 得的角加速度β越大,刚体的转动状态容易发生变化。转动惯 量J是和质量m相对应的物理量,物体的质量m是质点的平动惯性 的量度,而刚体的转动惯量J是刚体转动惯性的量度。
理论力学第三章刚体力学 ppt课件

正常转动,赝张量的变换多出一个负号。
对于张量,可定义如下运算:
1)相等。
设A和B为两个同阶张量,如果它们的所有分量相等,
即
A ... B ... ,则称它们相等,记为A = B.
2)加法。
两个同阶张量A和B的和定义为 C ...=A ...+B ... 它仍为一个张量,记为 C=A+B
L
a
L
a AL L )(a L
a L
a
B L
L
)
a L aa L a AL L BL L (a a )
a L aa L a ( AL L BL L )
nr nr nr nr
1)转动前: rr 2)转动nr 后:rr nr rr
3)再rr 转动nr rrnr后nr:rr nr rr
不计二阶微量,则有
rr rr nr rr nrrr
交换转动次序,则有
rr rr nrrr nr rr 已知对线位移,有 rr rr rr rr 可得 nr rr nrrr nrrr nr rr
§3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 欧勒角 §3.4 刚体运动方程与平衡方程 §3.5 转动惯量 §3.6 刚体的平动与绕固定轴的转动
§3.7 刚体的平面平行运动 §3.8 刚体绕固定点的运动 §3.9 重刚体绕固定点转动的解 §3.10 拉莫尔进动
§3.1 刚体运动的分析
1. 描写刚体位置的独立变量
将两个矢量Av和Bv按顺序并在一起,不作任何运算
得到的量称为并矢,记为
vv AB
A
B ev ev
第三章刚体力学基础[1]PPT课件
![第三章刚体力学基础[1]PPT课件](https://img.taocdn.com/s3/m/21ab6d8ae45c3b3566ec8b80.png)
注意: F应该理解为外力在转动平面内的分力
如果有几个外力矩作用在刚体上,则合力矩等于
各个力矩的代数和
Mi riFi
i
i
力是引起质点运动状态变化的原因,而力矩是引起
转动物体运动状态变化的原因
二 刚体绕定轴的转动定律
刚体转动定律可由牛顿第二定律直接导出
F ifi m iai
外力的合力
内力的合力
假设 Fi和fi 都是位于质
点i所在的转动平面内
得到:
质点i的加速度 Z Mz
df
dF
Odr
dm
dF
F i fi m ia i m ir i
转动平面
dFn
转动定律
将力分解为作用在质量元△m上
的切向力和法向力
Z Mz
Fifim iai
dF df
Finfinmiain
将切向分量式两边同乘r,
例1、求质量为m、半径为R的均匀圆环的转动惯量。 轴与圆环平面垂直并通过圆心。
解: J r2dm
Z
R 2dm R 2 dm m2R O
J是可加的,所以若为薄圆筒 (不计厚度)结果相同。
R dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转动 惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
•转轴的位置
布,与转轴的位置结合决定转
•刚体的形状
轴到每个质元的矢径。
单个质点的转动惯量 J miri2 n
质点系的转动惯量 J (miri2)
i1
质量连续分布的刚 体的转动惯量
J r2dm m
国际单位制中转动惯量的单位为千克·米2(kg·m2)
转动惯量的定义及物理意义
刚体力学基础PPT课件

转动:分定轴转动和非定轴转动 刚体的平面运动
5
二、刚体定轴转动的描述
1.刚体定轴转动的特点 轴上各点都保持不动,轴外各点在同一时间间隔内转过的角度一样。
以某转动平面与转轴的交点为原点,转动平面上所有质元都绕着这个 原点作圆周运动。
2.描述 可类似地定义绕定轴转动的刚体的:
*角位置 (t)
i
ri
z
切向加速度 法向加速度
ai ri
ani ri 2
ri
vi
§3-2 定轴转动刚体的转动惯量
一、刚体定轴转动定律
(1)单个质点m
与转轴刚性连接
Ft mat mr
M rF sinθ
z
M
Ft
F
O
r
m
Fn
M rFt mr 2 M mr2
一、刚体运动分类
2.转动 如果刚体上的所有质元都绕某同一直线作圆周运动,这种运动就称之为转动,
这条直线称为转轴。
A
A
分为定轴转动和非定轴转动
*非定轴转动 若转轴方向或位置变化,这种转动称为非定轴转动
A
A
* 定轴转动 若转动轴固定不动,这种转动称为定轴转动. 这个转
轴称为固定轴,
转动平面:垂直于固定轴的平面
内力(F质i2j 量)元刚受体外力Fej ,
Mej Mij mjrj2
外力矩
内力矩
z
O rj
Fej
m j
Fij
Mej Mij mjrj2
j
j
Mij M ji Mij 0
j
理论力学周衍柏第三章

一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
大学物理.第三章.刚体的转动PPT课件

M ij
O
rj
d ri
i
j
Fji Fij
M ji
Mij M ji
第33页/共66页
例3-4 如图所示, 均匀细杆, 长为L,在平面内以角
速度ω绕端点转动,摩擦系数为μ 求M摩擦力。
ω
解: 质量线密度:
m L
质量元:
r dm dr
所受摩擦力为:
dF gdm gdr
第34页/共66页
例3-5 现有一圆盘在平面内以角速度ω转动,求 摩擦力产生的力矩(μ、m、R)。
ω
解:
dm ds rdrd
dF gdm grdrd
dM1
rdF
r2gdrd 第35页/共66页
要揭示转动惯量的物理意义,实际上是要找到一 个类似于牛顿定律的规律——转动定律。
二、转动定律 刚体可看成是由许多小质元组 成,在p点取一质元,
O
受力:外力 ,与 成 角
P
合内力 ,与 成 角
第36页/共66页
如图可将力分解为两个
力,只求那个垂直于轴
的力的力矩就可以了。 第39页/共66页
3)转动定律说明了I是物体转动惯性大小的量度。 因为:
即I越大的物体,保持原来转动状态的性质就 越强,转动惯性就越大;反之,I越小,越容 易改变状态,保持原有状态的能力越弱。或者 说转动惯性越小。 如一个外径和质量相同的实心圆 柱与空心圆筒,若 受力和力矩一 样,谁转动得快些呢?
当杆到达铅直位置时重力矩所作的功.
FN ZL
以杆为研究对象
受力: mg,FN
φ mg
重力矩: M
A mg 1
L
mg
1 2
L
cos
[理学]大学物理课件第3章-刚体
![[理学]大学物理课件第3章-刚体](https://img.taocdn.com/s3/m/7510c90e4431b90d6c85c72f.png)
m 2mrdr dm 2 r dr 2 2 R R
2mgr 2 dr dM 2 R
M dM
r
0
2mgr dr 2 mgR 2 R 3
2
d M J dt
2 1 2 d mgR mR 3 2 dt
3R dt d 4 g
3R 0 dt 0 4 g d
A
c o
1 2 3g 3g 2 sin 0 2 2l 2l
3g l
B
0
例6. 一半径为R,质量为m的均匀圆盘平放在粗糙的 水平面上。若它的初速度为o,绕中o心旋转,问经 过多长时间圆盘才停止。(设摩擦系数为)
解
dM dF r dmg r
dr r o R
T m mg
例5.一质量为m,长为l 的均质细杆,转轴在o点,距 A端l/3。今使棒从静止开始由水平位置绕o点转动, 求:(1)水平位置的角速度和角加速度。(2)垂直 位置时的角速度和角加速度。
解:
J o J c md
2
2
1 2 l 1 2 J 0 ml m ml 12 6 9
( 1)
A
c o
B
o 0
M mgl 6 3g 2 J 0 ml 9 2l
(2)
d M J dt
l 1 2 d 1 2 d mg cos ml ml 6 9 dt 9 d
3g d cos d 2l
0
d
2
0
3g cos d 2l
定轴转动:
转轴固定不动的转动。
刚体的转动动能
I mi ri
大学物理第三章刚体力学

第三节 定轴转动的动能定理
1. 力矩的功
dA F dl F cos dl F cos rd Frsin d Md
A Md
1 2
d
dl
r
F
dA d M M 功率为: P dt dt
2.转动动能
刚体中任一质元 mi 动能:
1 1 2 2 2 mi vi mi ri 2 2
因此,刚体的转动动能:
ri
vi
1 1 2 2 2 2 Ek mi ri mi ri 2 2
1 2 Ek J 2
3.刚体做定轴转动时的动能定理
d dA Md J d J d d t 2 1 1 2 2 A dA J d J 2 J 1 1 2 2 1 2 1 2 A J 2 J 1 2 2
刚体各质元的角量相同,线量一般不同。 对刚体的运动描述,要注意角量、线量的特点。 对于定轴转动任意一点线速度与角速度、线加速度与角加 速度的关系:
v r
at r an r 2
刚体作匀变速转动时, 0 t 有以下的运动方程: 1 2 0 0t t 2 2 2 0 2 0
定轴转动角动量定理:作定轴转动的刚体所受的对轴的的 冲量矩等于系统角动量的增量。
对于绕固定点的转动,可以做如下变化
dL M dt
t2 dL Mdt L2 L1 M t1 dt t2 是力矩在t1 到t2时间内的冲量矩。 M d t
t1
3.角动量守恒定律 ������ = 0 , ������������ = 0 , ������ = const. ������������ ������2 = ������1 ������2 ������ 2 = ������1 ������ 1 若系统合外力矩为零,则系统的角 动量守恒。 ——自然界重要的普遍规律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学
电子科技大学物理电子学院 付传技
Email:fcj@
1
第三章 刚体力学
刚体也是一个理想模型,它可以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
17
我们分别用Ox1x2x3(或Oxyz)和Ox1x2 x3(或Oxyz) 来标志空间坐标系和本体坐标系,它们的单位矢量
分别为e和e( =1, 2,3或x, y, z)。
本体系相对于空间系的取向可以用其单位矢量e1, e2,e3在空间系中的9个方向余弦来描写:
cos(e , e ) e e a (=1, 2,3)
或a a (行行正交)a a (列列正交)
这些关系通常叫做正交条件。满足正交条件 的矩阵叫正交矩阵,相应的变换称为正交变换。
22
根据Kronec ker 符号 对指标的交换的对称性
可知,9个正交条件实际上只有6个独立(3个对角 ,3个非对角),所以独立的方向余弦数目为
9-6=3
23
2)Aˆ的行列式为1.即 det Aˆ 1ˆ 证:对正交条件两端取行列式,并注意到 det AˆT det Aˆ,得 det Aˆ 1ˆ 因为不转动(恒等变换)为连续转动的一种 特例,它所对应的变换矩阵为单位阵,所以 只能取正号。
8
4)定点转动
定点转动的独立变量有三个,其中两个 确定转动轴的方向,一个确定其它点绕轴转 动的角度。
9
Euler定理
定点运动刚体的任何位移都可以通过 绕过该定点某轴的一次转动来实现。
10
5)一般运动(Chasles定理)
刚体的最一般位移可以视为其上任意一点的平移加上 绕该点的一个转动,即
刚体的一般运动=基点的平动+绕基点的转动
2
第三章 刚体力学
§3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 欧勒角 §3.4 刚体运动方程与平衡方程 §3.5 转动惯量 §3.6 刚体的平动与绕固定轴的转动
§3.7 刚体的平面平行运பைடு நூலகம் §3.8 刚体绕固定点的运动
§3.9 重刚体绕固定点转动的解 §3.10 拉莫尔进动
3
§3.1 刚体运动的分析
x2
a21
a22
a23
x2
x3 a31 a32 a33 x3
或简记为 rˆ Aˆ rˆ
矩阵Aˆ称为转动矩阵或变换矩阵。
20
转动矩阵的性质:
1)Aˆ是可逆的,且其逆阵就是自身的转置 Aˆ-1=AˆT 证:设从空间系到本体系的变换矩阵为Aˆ,按Euler 定理,也存在从本体系到空间系的变换矩阵Aˆ ,于是
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
21
转动不改变位矢的长度,所以 rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ 由rˆ的任意性可得 AˆT Aˆ=1ˆ 这表明Aˆ的逆矩阵就是其转置。 这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
4
确定刚体在空间的位置,需要几个变量?
B
A
C
6个变量可以确定刚体位置
5
2. 刚体运动的分类 1)平动
平动的独立变量为三个
6
2)定轴转动
世界最大的摩天轮——“伦敦眼”
定轴转动的独立变量只有一个
7
3)平面平行运动
平面平行运动的独立变量有三个
vP vB B BP (vA A AB) B BP
上两式相减,得
0=A (AB AP) B BP A PB B BP
(B A ) BP
由于P点选取的任意性,故 与基点选取无关)
B=A (即角速度
16
§3.3 欧勒角
• 正交变换
对于作定点运动的刚体,如何描述其 转轴的取向?一种可行的方法是,以定点 O为原点,建立两个坐标系:一个固定在 地球上,称为空间坐标系或静止坐标系, 另一个固定在刚体上,称为本体坐标系, 也叫随体坐标系或体轴坐标系。后者可以 看作扩展的刚体。本体坐标系相对于空间 坐标系的取向就代表了刚体在空间中的取 向。
nr nr nr nr 13
1)转动前: rr 2)转动nr 后:rr nr rr
3)再rr 转动nr rrnr后nr:rr nr rr
不计二阶微量,则有
rr rr nr rr nrrr
交换转动次序,则有
rr rr nrrr nr rr 已知对线位移,有 rr rr rr rr 可得 nr rr nrrr nrrr nr rr
即 nr nrrr nr nr rr nr nr nr nr
14
2.角速度矢量
lim nr dnr r
t 0 t
dt
vr drr lim rr lim nr rr dnr rr r rr
dt t0 t t0 t
dt
15
角速度的绝对性(即角速度与基点的选取无关)
证明:设当取A点为基点时,刚体的角速度为 A , 此时刚体上任意一点P的速度为:vP vA A AP 若取B为基点时,设角速度为B,则
刚体一般运动的独立变量有六个
11
§3.2 角速度矢量
1.有限转动与无限小转动 有限转动不是矢量,它不满足矢量加法对易律
12
无限小转动是矢量, 它满足矢量加法交换律 证明
定义角位移nr,其大小 nr
位移矢量 rr 0时,垂直于rr nr 平面
rr PM g, PM r sin
rr rr gnr gsin rr nr rr 若 nr 是矢量它应当满足矢量加法交换律
18
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
19
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1
电子科技大学物理电子学院 付传技
Email:fcj@
1
第三章 刚体力学
刚体也是一个理想模型,它可以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
17
我们分别用Ox1x2x3(或Oxyz)和Ox1x2 x3(或Oxyz) 来标志空间坐标系和本体坐标系,它们的单位矢量
分别为e和e( =1, 2,3或x, y, z)。
本体系相对于空间系的取向可以用其单位矢量e1, e2,e3在空间系中的9个方向余弦来描写:
cos(e , e ) e e a (=1, 2,3)
或a a (行行正交)a a (列列正交)
这些关系通常叫做正交条件。满足正交条件 的矩阵叫正交矩阵,相应的变换称为正交变换。
22
根据Kronec ker 符号 对指标的交换的对称性
可知,9个正交条件实际上只有6个独立(3个对角 ,3个非对角),所以独立的方向余弦数目为
9-6=3
23
2)Aˆ的行列式为1.即 det Aˆ 1ˆ 证:对正交条件两端取行列式,并注意到 det AˆT det Aˆ,得 det Aˆ 1ˆ 因为不转动(恒等变换)为连续转动的一种 特例,它所对应的变换矩阵为单位阵,所以 只能取正号。
8
4)定点转动
定点转动的独立变量有三个,其中两个 确定转动轴的方向,一个确定其它点绕轴转 动的角度。
9
Euler定理
定点运动刚体的任何位移都可以通过 绕过该定点某轴的一次转动来实现。
10
5)一般运动(Chasles定理)
刚体的最一般位移可以视为其上任意一点的平移加上 绕该点的一个转动,即
刚体的一般运动=基点的平动+绕基点的转动
2
第三章 刚体力学
§3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 欧勒角 §3.4 刚体运动方程与平衡方程 §3.5 转动惯量 §3.6 刚体的平动与绕固定轴的转动
§3.7 刚体的平面平行运பைடு நூலகம் §3.8 刚体绕固定点的运动
§3.9 重刚体绕固定点转动的解 §3.10 拉莫尔进动
3
§3.1 刚体运动的分析
x2
a21
a22
a23
x2
x3 a31 a32 a33 x3
或简记为 rˆ Aˆ rˆ
矩阵Aˆ称为转动矩阵或变换矩阵。
20
转动矩阵的性质:
1)Aˆ是可逆的,且其逆阵就是自身的转置 Aˆ-1=AˆT 证:设从空间系到本体系的变换矩阵为Aˆ,按Euler 定理,也存在从本体系到空间系的变换矩阵Aˆ ,于是
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
21
转动不改变位矢的长度,所以 rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ 由rˆ的任意性可得 AˆT Aˆ=1ˆ 这表明Aˆ的逆矩阵就是其转置。 这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
4
确定刚体在空间的位置,需要几个变量?
B
A
C
6个变量可以确定刚体位置
5
2. 刚体运动的分类 1)平动
平动的独立变量为三个
6
2)定轴转动
世界最大的摩天轮——“伦敦眼”
定轴转动的独立变量只有一个
7
3)平面平行运动
平面平行运动的独立变量有三个
vP vB B BP (vA A AB) B BP
上两式相减,得
0=A (AB AP) B BP A PB B BP
(B A ) BP
由于P点选取的任意性,故 与基点选取无关)
B=A (即角速度
16
§3.3 欧勒角
• 正交变换
对于作定点运动的刚体,如何描述其 转轴的取向?一种可行的方法是,以定点 O为原点,建立两个坐标系:一个固定在 地球上,称为空间坐标系或静止坐标系, 另一个固定在刚体上,称为本体坐标系, 也叫随体坐标系或体轴坐标系。后者可以 看作扩展的刚体。本体坐标系相对于空间 坐标系的取向就代表了刚体在空间中的取 向。
nr nr nr nr 13
1)转动前: rr 2)转动nr 后:rr nr rr
3)再rr 转动nr rrnr后nr:rr nr rr
不计二阶微量,则有
rr rr nr rr nrrr
交换转动次序,则有
rr rr nrrr nr rr 已知对线位移,有 rr rr rr rr 可得 nr rr nrrr nrrr nr rr
即 nr nrrr nr nr rr nr nr nr nr
14
2.角速度矢量
lim nr dnr r
t 0 t
dt
vr drr lim rr lim nr rr dnr rr r rr
dt t0 t t0 t
dt
15
角速度的绝对性(即角速度与基点的选取无关)
证明:设当取A点为基点时,刚体的角速度为 A , 此时刚体上任意一点P的速度为:vP vA A AP 若取B为基点时,设角速度为B,则
刚体一般运动的独立变量有六个
11
§3.2 角速度矢量
1.有限转动与无限小转动 有限转动不是矢量,它不满足矢量加法对易律
12
无限小转动是矢量, 它满足矢量加法交换律 证明
定义角位移nr,其大小 nr
位移矢量 rr 0时,垂直于rr nr 平面
rr PM g, PM r sin
rr rr gnr gsin rr nr rr 若 nr 是矢量它应当满足矢量加法交换律
18
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
19
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1