高等数学6章常微分方程

合集下载

常微分方程的数值解

常微分方程的数值解

f ( x, y1 ) f ( x, y2 ) L y1 y2
(其中 L 为 Lipschitz 常数)则初值问题( 1 )存 在唯一的连续解。
求问题(1)的数值解,就是要寻找解函数在一 系列离散节点x1 < x2 <……< xn < xn+1 上的近似 值y1, y 2,…,yn 。 为了计算方便,可取 xn=x0+nh,(n=0,1,2,…), h称为步长。
(1),(2)式称为初值问题,(3)式称为边值问题。 在实际应用中还经常需要求解常微分方程组:
f1 ( x, y1 , y2 ) y1 ( x0 ) y10 y1 (4) f 2 ( x, y1 , y2 ) y2 ( x0 ) y20 y2
本章主要研究问题(1)的数值解法,对(2)~(4)只 作简单介绍。
得 yn1 yn hf ( xn1 , yn1 )
上式称后退的Euler方法,又称隐式Euler方法。 可用迭代法求解
二、梯形方法 由
y( xn1 ) y( xn )
xn1 xn
f ( x, y( x))dx
利用梯形求积公式: x h x f ( x, y( x))dx 2 f ( xn , y( xn )) f ( xn1 , y( xn1 ))
常微分方程的数言 简单的数值方法 Runge-Kutta方法 一阶常微分方程组和高阶方程
引言
在高等数学中我们见过以下常微分方程:
y f ( x, y, y) a x b y f ( x, y ) a x b (2) (1) (1) y ( x ) y , y ( x ) y 0 0 0 0 y ( x0 ) y0 y f ( x, y, y) a x b (3) y(a) y0 , y(b) yn

高等数学题库常微分方程

高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。

2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。

3、通解为xce y =(c 为任意常数)的微分方程是___________。

4、满足条件()()=+?dx x f x f x2的微分方程是__________。

5、 y y x 4='得通解为__________。

6、1+=y dxdy的满足初始条件()10=y 的特解为__________。

7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。

8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。

二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。

《高数》第6章

《高数》第6章

把 x t t 0 1, x t t 0 3 代入 x t c1 cos t c2 sin t 和
x t c1 sin t c2 cos t 得 c1 1, c2 3 .故所求的解为: x t cos t 3sin t
得到通解
G ( y ) F ( x) c 1 其中G(y)与F(x)分别是 与f(x)的一个原函数, c是 g ( y) 任意常数,式(2)就是方程(1)的隐式通解. 第 三 步 , 在 第 一 步 中 , 用 g(y) 除 方 程 的 两 边 , 而 g(y)=0 是 不 能 做 除 数 的 , 所 以 对 g(y)=0 要 单 独 考 虑.由g(y)=0解出的y是常数,它显然满足原方程, 是原方程的特解,这种特解可能包含在所求出的通解 中,也可能不包含在所求出的通解中(此时要把它单 独列出). 例1 分方程 y 2 xy 的通解.
例3(推广普通话问题) 在某地区推广普通话,该地 区的需要推普的人数为N,设t时刻已掌握普通话的 人数为p(t),推普的速度与已推普的人数和还未推普 的人数之积成正比,比例常数为k>0于是得到 dp kp ( N p ) dt
此方程称为logisitic方程,在生物学,经济学等学科 领域有着广泛应用. 定义1 含有未知函数的导数(或微分)的方程叫微分方 程.未知函数为一元函数的微分方程称为常微分方 程.如 (1) y x dp kp ( N p ) (2) dt
y P ( x ) y Q ( x ) 的方程称为一阶线性微分方程,其中P(x)为Q(x)的已 知函数.当Q(x)不恒为0时,方程(5) 称为一阶线性非 齐次微分方程.当 Q( x) 0时,方程(5)变成 y P ( x ) y 0 该方程称为一阶线性齐次微分方程. 显然,一阶线性齐次微分方程是可分离变量的方 程.一阶线性非齐次微分方程的求解步骤如下: 第一步,先求解其对应的齐次方程: y P ( x ) y 0

高数应用数学 第6章 常微分方程

高数应用数学 第6章  常微分方程

dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2gh dt,
100 cm
(200h h2 )dh 0.62 2gh dt,
即为未知函数的微分方程.
可分离变量
dt (200 h h3 )dh, 0.62 2g
t (400 h3 2 h5 ) C,
代入M t0 M0 得 M0 Ce0 C ,
M M0et
衰变规律
例4 有高为1米的半球形容器, 水从它的底部小孔流
出, 小孔横截面积为1平方厘米(如图). 开始时容器内盛满 了水, 求水从小孔流出过程中容器里水面的高度h(水面与 孔口中心间的距离)随时间t的变化规律.
解 由力学知识得,水从孔口流出的 流量为
一、问题的提出
数学知 识
基本科 学原理
微分 方程
例 1 列车在平直的线路上以 20 米/秒的速度行驶,当制动
时列车获得加速度 0.4米/秒 2,问开始制动后多少时间列
车才能停住?以及列车在这段时间内行驶了多少路程?
解: 设制动后 t 秒钟行驶 s 米, s s(t)
d 2s dt 2
0.4
t 0时, s 0,v ds 20, dt
2.微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且任意常数 的个数与微分方程的阶数相同.
例 y y,
通解 y Ce x;
y y 0, 通解 y C1 sin x C2 cos x;
(2)特解: 确定了通解中任意常数以后的解.
初始条件: 用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题. 解的图象: 微分方程的积分曲线. 通解的图象: 积分曲线族.

《常微分方程》课程大纲

《常微分方程》课程大纲

《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。

面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。

二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。

本章教学重点解释常微分方程解的几何意义。

(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。

2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。

3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。

4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。

本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。

并通过习题课进行初步解题训练,提高解题技巧。

(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。

《高等数学》第6章常微分方程

《高等数学》第6章常微分方程

y x2 4 4 x2
想一想
一电机开动后,每分钟温度升高10 C,同时将按冷却定律不断发散
热量.设电机安置在15 C恒温的房子里,求电机温度与时间t的函
数关系.
6.3 二阶常系数线性微分方程
了解二阶常系数线性微分方程的 概念及分类;掌握二阶常系数齐 次、非齐次线性微分方程的求解 方法及分类;能够灵活运用公式 解决实际问题.
Cx x 1,两边积分得 : Cx 1 x 12 C.因此原方程通
2 解为 :
y
1 2
x
12
C x
12
1 2
x
14
Cx
12
(C为任意常数).
2. 求微分方程y 2 y x满足条件y2 0的特解.
x
解:先解方程y 2 y 0 dy 2 dx,两边积分得y Cx2.
方程. 这类方程的求解一般分为两步:
1 分离变量:化原方程为 dy f (x)dx的形式;
g( y)
2 两边积分: gd(yy) f (x)dx得到x与y的一个关系式,即通解.
例题
1. 求微分方程 dy 2xy的通解.
dx
解:分离变量为dy
y
2 xdx, 两边积分得
dy y
2xdx ln
同时,C1,C2为任意常数,故y C1ex C2e2x是微分方程的通解.
将条件代入通解中, 得CC11
C2 0 2C2 1
CC12
1 .
1
故所求特解为: y ex e2x.
想一想
建设绿地、防止土地沙漠化的环保意识已成为人 们的共识.现已查明,有一块土地正在沙化,并且 沙化的数量正在增加,其增加的速率与剩下的绿地 数量成正比.有统计得知,每年沙化土地的增长率 是绿地的 1 ,现有土地10万亩,试求沙化土地与

《高等数学》第6章常微分方程知识讲解

《高等数学》第6章常微分方程知识讲解

微分方程的通解
如果微分方程的解中含有任意常数,且相互独立的任意
常数的个数与微分方程的阶数相同,则这样的解称为微
分方程的通解.
例 函 S 数 0 .4 t2 ct c是微 d 2 S 分 0 .8 的 方 .通 程
12
d2 t
注 形y如 n fx的微分 ,只方 要程 通过 (n次 逐 ), 次积
方程的阶.
例dy 2x是一阶微 ,d2S分 0.8方 都程 是二阶 . 微
dx
d2t
注 通 n 阶 常微分方 为 F 程 (: x,y,y 的 ,y, 一 ,yn)般 0 .
微分方程的解
若把某个函数代入微分方程后,使该方程成为恒等式,则 这个函数称为微分方程的解.
例函数 yx2c和yx2都是微分方 . 程的解
德育目标
培养学生小心求证,大胆应用于实际的综 合能力.
6.1 微分方程的基本概念
通过实际例子;了解微分方程的 概念和微分方程的阶的概念;掌 握求微分方程通解的方法;能够 利用初始条件求微分方程的特解.
6.1.1 实例分析
想一想:
已知曲线上各 斜点 率的 等切 于线 该点 二横 倍 ,且 坐过 标的
0.8,
dt2
且满足条件:t 0时S 0,v dS 40(或写成S(0) 0,S(0) 40). dt
将d2S 0.8两端对x积分,得v dS 0.8t c .再积分一次,得
dt2
dt
1
S 0.4t2 ct c (其中c ,c 都是任意常数 ).将所满足的条件代入
1
2
12
上式,得:c 40,c 0.于是,路程S关于时间t的函数为:
10
时间的函数关系式.
6.2 一阶微分方程

高等数学下册作业本答案

高等数学下册作业本答案

0
,q =
-1
.
3.微分方程 y′′ − 2 y′ + y =0 满足条件 y = 4, y′ = −2 的特解为 y= (4 − 6x)ex . =x 0=x 0
4.微分方程 y′′ − 2 y′ + 5y = 0= 的通解为 y ex (C1 cos 2x + C2 sin 2x) .
= 5.以 y ex (C1 sin x + C2 cos x) 为通解的二阶常系数线性微分方程为 y′′ − 2 y′ + 2 y = 0 .
0
0
y = f (x) ,即 y′′ − y = 0 ,对应的特征方程为 r 2 −1 = 0 ,特征根 r1 = 1, r2 = −1,所以通解
为 y = C1ex + C2e−x ,又 f (0) = 0 , f ′(0) = 0 ,代入得 C1 = 0, C2 = 0 ,故 f (x) = 0 .
第六章 微分方程
第一节 微分方程的基本概念
一、单项选择题
1. 下列各式中是常微分方程的为
B.
A. y2 + y =3 B. y′′ + y2 = y′ C. xy′ + y =(xy)′
D. x + z′x + z′y =y
2. 函数 y= C − x ( C 为任意常数)是微分方程 xy′′ − y′ = 1的 C .
y = C1ex + C2e4x ,由于 λ = 1 是特征方程的一个根,可设 y*(x) = axex 为原方程的一个特
解,代入得
a
=
−2 3
,所以
y*(x)
=
− 2 ex 3
,所以通解为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 y uxe Pxdx

y
u x e
P x dx
uP x e
P x dx
代入(1)中有:
uxeP xd xuxP xeP xdxPxuxePxdx Qx
Qxuxe
Pxdx
,即:u
x
Q x e
P xdx
ux
Qxe
Pxdx
d
xC,从而,
y uxe Pxdx
e
P xdx
Q x e
可化为
y x
的函数
y x
,即:
f
x,
y
y x
,称
该方程为齐次方程.
如: x y y 2 d x x 2 2 x d y 0 y
可化为:dy
dx
xy y 2 x2 2xy
y x
y x
1 2
2
y x
由齐次方程的形式:dy
dx
y x
得其解法为:
对于
dy dx
y x
,令 u
当 y 0 时,原方程有解: y 0 当 p 0 ,即 y 0 时,原方程有解: y C
显 然 此 二 解 是 (*) 式 分 别 当 C2 0 和 C2 C,C1 0 时的特殊情形.

d2x dt 2
,
x
代入方程
d2x dt 2
k
2
x
0
得:
k2C 1co k ts C 2sikn tk 2 C 1co k s tC 2sikn t 0
即:x
C1
cos kt
C2
sin
kt

d2x dt 2
k
2
x
0
的解.
将条件 x t0 A 代入 x C1 cos kt C2 sin kt 得:
y2 y y 0 为二阶.
定义3 未知函数是一元函数的微分方程为常微分
方程,为多元函数的微分方程为偏微分方程(数学物 理方程).
定义4 使微分方程成为恒等式的函数称为微分 方程的解.
如:(3,4,7)
定义5 微分方程的解中的任意常数的个数与方程
的阶数相同,这种解称为方程的通解.不含有任意 常数的解称为特解.
lnC1x2
p C 11 x2 C1C
即有: y C1 1 x2
将条件 y |x0 3代入得: C1 3
对 y 3 1 x2 两端再积分得:
y
3x
x3 3
C2
再将
y
x0 1 代入得: C2
1 3
故所求方程的特解为: y x3 3x 1
3、右端不显含x的方程
微分方程 yfy,y
当 Qx 0 时,有 y Pxy 0
称为一阶线性齐次微分方程.
…(1) …(2)
当 Qx 不恒等于零时,称为一阶线性非齐次方程.
通常也说(2)是(1)对应的齐次方程.
其解法为:
由(2)易得: dy Pxdx
y
lnyPxdxlnC1
y Ce Pxdx ( C 为任意常数) …(3)
这就是(2)的通解.
高等数学
第6章 常微分方程
主要内容:
一、微分方程的基本概念 二、一阶微分方程 三、可降阶的微分方程 四、二阶常系数线性微分方程
一、微分方程的基本概念
引例 1 某曲线过点 (1,2) 且任一点处的切线的 斜率为 2x ,求曲线方程.
解 依题意有 y 2x
……(1)
且 y x1 2 ,
……(2)
的含有n个任意常数的通解。
例8 解方程 y e2x cos x .
解 对方程两边连续积分三次得:
y1e2x sinxC 2
y1 4e2xcoxsC xC2
y8 1e2xsixn C 1x2C 2xC 3 C1
C 2
2、右端不显含y的方程
微分方程 yf(x,y)
其特点:不显含有未知函数 y 解法:
1)当 c c1 0 时,显然为齐次方程(略)
2)当 c 2
c1 2
0且
a a1
b b1
时,
令 x X h, y Y k ,代入上式有:
dY aX bY a hbkc dX a1Xb1Ya1hb1kc1 显然可取适当的 h, k ,使得:
ahbk c 0 a1hb1k c1 0
从而有: dY dX
x 12 2x123 C
3
三、可降阶的微分方程)
…(1)
对这类方程,只须两端分别积分一次就可化为
n-1阶方程: y(n1) f(x)d xC 1
同理可得: y(n2) [ f(x)dx C1]dx C2
依此法继续进行,接连积分n次,便得方程(1)
0
得:
h
k
3 2
,将
x
y
X Y
3 2
代入方程(*)得:
dY2XY dX XY
2Yx
1YX
令 Y u ,则Y uX , d u Y X d ,于是u
uXXdu2u,分离d 变量有:X d u1X dX
dX 1u
u2 2u2 X
所以 1 2
即: X
lnu 2
2u C1
2 ln C1 ln X
从而可得:s 0.2t 2 20t
……(7)
由上两例,得如下相关定义: 定义1 凡表示未知函数、未知函数的导数与自变
量关系的方程称为微分方程. 如:(1,5)
定义2 微分方程中未知函数的最高阶导数的阶
数称为微分方程的阶. 如:(1)为一阶,(5)为二阶,
f x, y, y , y, , yn 为 n 阶.
x
dx
dx
于是原方程变为: u x du u 2 ,即: x du u
dx u 1
dx u 1
分离变量得: 1
1 u
du
dx x
两端积分得: u ln u C ln x
即: ln xu u C ,将 u y 代回有:ln y y C
x
x
3、可化为齐次方程的微分方程
以下讨论方程 dy ax by c dx a1 x b1 y c1
这是可分离变量的微分方程.
例6 解方程 2x y 4dx x y 1dy 0
解 由原方程得: dy 2x y 4 …(*)
dx x y 1

x
y
X Y
h k
,则
dx dy
dX dY
,代入方程(*)得:
dY 2XY2hk4,又由 dX XYhk1
2h h k
k 1
4
0
C1 A
将条件
dx dt
t 0
0 代入
dx dt
k C1
sin kt
k C2
coskt 得:
C2 0 将 C1,C2 代入 x C1 cos kt C2 sin kt 得所求特解为:
xAcokst
二、一阶微分方程
1、可分离变量的微分方程 先看一个实例:
y 2xy2 将其化为 1 dy 2xdx
1 2
ln
x2 y2
1 1
C1
即:
x2 1 y2 1 C
y|x01
C 1 2
故所求特解为: x 2 1 1 y2 1 2
例4 设放射性元素铀的衰变速度与当时未衰变的铀
原子的含量 M 成正比.已知时间 t 0 时铀的含
量为 M 0 ,求衰变过程中铀的含量 M t 随时间
t 0 的变化规律.
y2 两边积分有: 1 x 2 C
y 即 y 1
x2 C
若某微分方程可化为:
gydy f xdx
的形式,称这种类型的微分方程为可分离变量的微 分方程.
形式: gydyfxdx
特点:左边的表达式中只含有 y ,右边的表达式中
只含有 x .
解法:两边积分
因为:若 f x, gy连续, 设 y x是 gydy f xdx
aX a1 X
bY b1Y
可化为齐次方程求解.
3)若 a b 时, 令 a b
a1 b1
a1 b1
代入原方程有:
dy dx
ax by c
ax by c1
再令 ax by v ,有 dv a b dy
dx
dx
代入上一方程得: 1 dv a v c
b dx v c1
y x
,则
y
ux
, 从而有:
dyux du,将其代入原方程得:
dx
dx
ux duu ,
dx
du dx
uu x
思路:作变换 u y , y ux ,使之成为可分离变 x
量的微分方程.
例5 解方程 y 2 x 2 y xyy.

由原方程得: dy dx
y2 xy x2
y x
2
y x
1
令 y u ,则 dy u x du
令 y p 为一新的未知函数,则可化为
p f x, p ,这是一阶微分方程,可解.
例9 求方程 1 x 2 y 2xy 满足 y x0 1, y x0 3
的特解.
解 设 y p ,则 y dp ,从而方程化为:
dx
dp p
2x 1 x2
dx
,两端积分得:
ln p ln 1 x2 lC n
由(1)可得:y x 2 C
……(3)
所以 y x 2 1
……(4)
引例 2 火车以 20 米/秒行驶时,若以 0.4m / s2 的加速度刹车,则到停止时位移为多少?
解 设刹车后位移与时间关系为 s st ,
则有
d 2s dt 2
相关文档
最新文档