七年级数学上册第2章有理数2.2有理数与无理数教案(新版)苏科版

合集下载

七级数学上册2.2有理数与无理数有理数和无理数有什么区别素材(新版)苏科版

七级数学上册2.2有理数与无理数有理数和无理数有什么区别素材(新版)苏科版

七级数学上册2.2有理数与无理数有理数和无理数有什么差别素材(新版)苏科版有理数和无理数有什么差别?负数的出现,致使了减法运算,无理数的出现,致使了开方运算.引入了无理数,数的范围就由有理数扩展到了实数.关于实数的研究,一定先搞清有理数和无理数有什么差别.主要差别有两点:第一,把有理数和无理数都写成小数形式时,有理数能写成有限小数或无穷循环小数,比方 4=4.0 ; 4 0.8;10.3 而无理数只好写成无穷不循环小数,比方5 32 1.4142L L ,3.1415926L L 依据这一点, 人们把无理数定义为无穷不循环小数.第二,全部的有理数都能够写成两个整数之比,而无理数却不可以写成两个整数之比. 根据这一点, 有人建议给无理数摘掉“无理”的帽子, 把有理数改叫“比数”, 把无理数改叫“非比数”.原来嘛,无理数其实不是不讲道理,不过人们最先对它太不理解罢了.利用有理数和无理数的定义,能够证明2 是无理数,使用的方法是反正法。

证明:2 是无理数。

假定2 是有理数,即 2a 2 22是偶数。

( a ,b 为自然数且互质)于是有a =2b , 故 ab2此刻来看当 a 是偶数时, a 是偶数仍是奇数.a 2=(2m+1) 2=4m 2+4m+1由于等式右侧必为奇数,而a 2 是偶数,所以等式不行能建立.故a 必为偶数.22222为偶数,所以 b 也是偶数。

既然a ,b 都是偶设 a=2m ,代入 a =2b 时获得 b =2m ,故 b 数, a就不行能是既约分数,这与假定相矛盾,故2 是无理数。

b依占有理数与无理数的这些差别,也不用担忧化分数22为小数时,它会不会是无穷不7循环小数。

由于全部能够写成n( n 是整数, m 是自然数)的数必是有理数。

m。

苏教版数学七年级上册第2章有理数复习课教案

苏教版数学七年级上册第2章有理数复习课教案

有理数复习课教学目标:1、复习整理有理数的有关概念和有理数运算法则,运算律以及近似计算等有关知识。

2、培养学生综合运用知识解决问题的能力。

3、渗透数形结合的思想。

重点:有理数概念和有理数运算 难点:对有理数运算法则和理解【要点梳理】要点一、有理数与无理数 1.有理数的分类:(1)按定义分类: (2)按性质分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧____________________________________________________________分数整数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数正分数正整数有理数__________________________________要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.无理数: 叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111……(相邻两个3之间1的个数逐渐增加).3.数轴:规定了、和的直线叫数轴.所有的有理数都可以用数轴上的表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示_____,原点及原点右边的数表示.4.相反数:数a的相反数是.数a的倒数是.的相反数大于它本身,的相反数小于它本身,的相反数等于它本身.的倒数等于它本身.5.绝对值:一个数a的绝对值是指数轴上表示数a的点与距离,记作.①一个正数的绝对值是;即:如果a>0,则|a|= ;②一个负数的绝对值是;如果a<0,则|a|= ;③0的绝对值是.如果a=0,则|a|= .反之:若一个数的绝对值是它本身,则这个数是;若一个数的绝对值是它相反数,则这个数是;即若|a|=a,则a 0;若|a|=-a,则a 0.6.有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数.⑵正数都0,负数都0,正数一切负数;⑶两个负数比较大小,.7.求 的运算叫做乘方, 叫做底数, 叫做指数,乘方运算的结果叫 。

苏科版七上册 2.2有理数与无理数课件(共14张PPT)

苏科版七上册 2.2有理数与无理数课件(共14张PPT)

14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。20 21年8 月14 日星期 六2021 /8/14 2021/ 8/142 021/8/ 14
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。202 1年8月 2021/8/142 021/8 /1420 21/8/ 148/1 4/202 1
0 .3 3 10
3.12 312 100
0.333 1 3
0.2666 4 15
有限小数和无限循环小数都可以化
为分数,它们都是有理数.
9、要学生做的事,教职员躬亲共做 ;要学 生学的 知识, 教职员 躬亲共 学;要 学生守 的规则 ,教职 员躬亲 共守。2 021/8 /1420 21/8/ 14Satu rday, August 14, 2021
板块一:有理数的概念
问题3:下列各数是有理数吗?为什么?
22
4.333 ,0,-2.5, 10,-1.1212 …, 7
板块二:无理数的概念 是不是所有的数都是有理数呢?
问题1: 将两个边长为1的小正方形,沿图中红线剪 开,重新拼成一个大正方形,它的面积为2.
如果设它的边长为 a ,那么 a 2 2 . a是有理数吗?
12、要记住,你不仅是教课的教师, 也是学 生的教 育者, 生活的 导师和 道德的 引路人 。202 1/8/1 42021 /8/14 2021/ 8/14Saturday , August 14, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。20 21/8/14202 1/8/1 42021 /8/14 2021/ 8/148 /14/2 021

七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件

七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件

第十页,共十一页。
内容(nèiróng)总结
教学课件。数学 七年级上册 江苏科技版。2.2 有理数与无理数。我们把能够写成分数形式(xíngshì) 且(m,n是整数,n≠0)的数叫做有理数.。, , ,。反过来,这些有限小数、无限循环小数都可
No 以化成分数,因此它们都是。有理数 0。1.2010010001000(相邻两个1之间0的个数逐次增加1。常见的
无理数的三种类型:。例 下列各数中,哪些是有理数。小结
Image
12/9/2021
第十一页,
数学(shùxué) 七年级上册 江苏科技 版
12/9/2021
第一页,共十一页。
第2章 有理数 2.2 有理数与无理数
12/9/2021
第二页,共十一页。
有理数的概念
正整数 整数 0
负整数
正分数 分数
负分数
整数可以表示成分数(fēnshù)的形式吗?
5 =0.5555……, 9
2 =0.181818……, 11
12/9/2021
第四页,共十一页。
0.8
有限小数
0.555…… -0.1777…… 0.181818……
无限(wúxiàn)循环 小数
无限(wúxiàn)循 环小数
无限循环小数
反过来,这些有限小数、无限循环小数都可以化成分数,因此
它们都是
解:有理数:3.14 , , 0.5 73; 无理数: 0.101000100 0004 1…(相邻(xiānɡ lín)两个1之间 0的个数逐次加2个).
12/9/2021
第八页,共十一页。
小结
(xiǎojié)
谈谈你这一节课有哪些(nǎxiē)收获.

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)

有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

七年级数学上册2.2有理数与无理数有理数和无理数的概念素材苏科版

七年级数学上册2.2有理数与无理数有理数和无理数的概念素材苏科版

有理数和无理数1定义:有理数:我们把能够写成分数形式n m (m 、n 是整数,n≠0)的数叫做有理数。

无理数:①无限②不循环小数叫做无理数。

如圆周率、√2(根号2)等.2有理数的分类整数和分数都可以写成分数的形式,它们统称为有理数。

零既不是正数,也不是负数。

有限小数和无限循环小数都可以看作分数,也是有理数。

3无理数的两个前提条件:(1)无限(2)不循环4区别:(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数后可以化为分数的形式,而无理数则不能。

实数的分类实数⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负分数正分数分数负整数正整数整数有理数0注意: 通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数.如果用字母表示数,则a >0表明a 是正数;a <0表明a 是负数;a 0表明a 是非负数;a 0表明a 是非正数。

几个易混淆概念⎪⎩⎪⎨⎧正数非负数0 ⎪⎩⎪⎨⎧负数非正数0 ⎪⎩⎪⎨⎧正整数非负整数0 ⎪⎩⎪⎨⎧负整数非正整数0尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版

江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版
D.3.14不是有理数
练习7.下列说法正确的是( B)
A.一个数不是正数就是负数 B.整数和分数统称有理数
C.有理数中没有最小的非负整数
D. π是有理数
…} …}
试一试
把下列各数填入相应的集合中:
4 ,2 0, 0 3 .1 5 ,0 4 ,2,2 5 .2, 31, 9% 5
7
8
正整数集合 负分数集合
练习2:把下列各数填入相应的集合中:
1 .2, 3 2 , 1,0 5 ,3 ,2,2.0 0, 2 10 , 2 0 2, 0 .51
7
3
正整数集合 负分数集合
π =3.1493238462643383279539 93751592328253421170679 ···
它是一个无限不循环小数
无限不循环小数叫做无 理数。
请同学们拿出准备好的一个边长为1 的小正方形和剪刀,将小正方形沿着图 中对角线剪开,同桌两位同学合作,将 你们的图形拼在一起,重新拼成一个大 正方形.
练习3:把下列各数填入相应的集合中
1.2, 32,1,0 5,3,2,2.0, 222
7
3
正数集合
整数集合
练习4.
下列说法中正确的有( A)个
①- 4 是负分数;
7
②1.5不是分数; ③非负有理数不包括0; ④0是最小的数
A.1 B.2 C.3 D.4
小结:
1.通常,有理数有哪两种分类原则? 它们是怎样分类的?
2.1 有理数与无理数
议一议
1.如果要将2,3,22 ,10,2 7 1,0,5
73
7
分成两类,你会怎样分?是这怎样的两类?
2.如果再增加 0.53,0.3 两数 ,你

苏科版 七年级数学上册 2.2有理数与无理数 课件

苏科版 七年级数学上册 2.2有理数与无理数  课件
有限小数、无限循环小数都可以化成 分数,因此它们都是 有理数
总结: 整数和分数统称为有理数.
有理数
整数
正整数 零
负整数
分数
正分数 负分数
有限小数和无限循环小数属于分数.
有理数还可以分为:
正整数
正有理数
正分数 有理数 零
负整数
负有理数
负分数
试一试 1.下列说法正确的是
B
整数集合:{ 分数集合:{
,1.414 213 56,
…} …}
有理数集合:{
…}
负有理数集合:{
…}
是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,
重新拼成一个大正方形,它的面积为2.
a
a
a
a
总结:
事实上, a 不能化为分数的形式, a是一个无限不循环小数,它的值是 1.414 213 562 373... ...
无限不循环小数叫做无理数.
你能举出一些无理数的例子吗?
小学学过的圆周率π是无限不循环小数,它的值 是3.141 592 653 589…,π是无理数.
正无理数 无理数
负无理数
无限不循环小数
试一试
1.下列说法正确的是 C
A、无理数包括正无理数、0和负无理数; B、3.1415926是无理数; C、- 是无理数 D、3.333 3 … 是无理数.
负有理数集合:{ 6, 1 ,-0.33,-3.141 592 6, …}
6
课堂小结:
课堂作业
伴你学:P7-8
家庭作业
1.伴你学:P9:问题导学; 2.补充习题:P6:2.2有理数与无理数 3.明天带刻度尺!!
A、正数和负数统称为有理数; B、整数和分数统称为有理数; C、有理数是指整数、分数、正数、负数和0 D、以上均不对.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2有理数与无理数
【教学目标】
知识与技能:(1)理解有理数的意义;
(2)知道无理数是客观存在的,了解无理数的概念;
(3)会判断一个数是有理数还是无理数.
过程与方法:经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数.
情感态度与价值观:经历本节课的学习,培养学生树立分类讨论的观点和能正确进行分类的能力.
【重难点】
重点:(1)区分有理数与无理数的概念,知道无理数是客观存在的;
(2)感受估算法,估算无理数的值.
难点:会判断一个数是有理数还是无理数,体会“无限”的过程.
【教学过程】
活动一:创设情境,复习引入
(出示幻灯片)1.下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数? -8.4 ,22 ,617-,0.33,0,5
3-,-9. 2.昨天我们学习了正数、负数,因此我们可以把数如何分类呢?整数和分数呢?
处理方式:通过多媒体展示这2道题,学生举手回答,教师总结:我们把以上这些数统称为有理数,从而引入本节课的内容.
活动二:明确概念,探究分类
【探究一】有理数的概念以及分类 把能够写成分数形式m n
(m ,n 是整数,n≠0)的数叫做有理数.(处理方式:教师请学生读课本上的有理数的概念)
(出示幻灯片)正整数、0、统称为整数,正分数和负分数统称分数.
整数和分数统称有理数.
师:上面的分类标准是什么?我们还可以按其他标准分类吗?
学生讨论交流,师生共同归纳.
说明:以上分类在师生共同归纳出后,让学生在一定的时间内理解记忆,可在小组内检查过关.
【探究二】无理数的概念
让学生阅读课本上有关无理数的内容,请其中一名学生读无理数的概念:无限不循环的小数叫做无理数.
注意:(1)无理数必须同时满足:①是无限小数;②不循环.
(2)π是无理数.
教师总结:常见的无理数的三种类型
例把下列各数填在相应的括号内:
-6,9.3,6
1-,42,0,-0.33,0.333...,1.41421356,π2,3.3030030003...(相邻两个1之间0的个数逐次增加1),-3.1415926.
正数集合{ …};
负数集合{ …};
正有理数集合{ …};
负有理数集合{ …}.
解:正数集合{ 9.3,42,0.333...,1.41421356,π2,3.3030030003...(相邻两个1之间0的个数逐次增加1),…};
负数集合{ -6,6
1-,-0.33,-3.1415926,…}; 正有理数集合{ 9.3,42,0.333...,1.41421356,3.3030030003...(相邻两个1之间0的个数逐次
增加1),…};
负有理数集合{ -6,6
1-,-0.33,-3.1415926,…}. 处理方式:学生举手回答,教师点评并总结.
【当堂反馈】
1.下列四个实数中,是无理数的为( ).
A .0
B .
C .﹣1
D .
2.下列四个数中,正整数是( ).
A .﹣2
B .﹣1
C .0
D .1
3.下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,﹣
,0.404004…(每两个4中逐次增加一个0)中,无理数有 个.
4.把下列各数填在相应的大括号内:
1,﹣0.1,﹣789,25,0,﹣20,﹣3.14,. 正整数集{ …};
负整数集{ …};
正分数集{ …};
负分数集{ …};
正有理数集{ …};
负有理数集{ …}.
【课后小结】
回答:(1)什么叫无理数?
(2)怎样将一组数进行分类?
(3)如何判断一个数是无理数还是有理数?
【教学反思】。

相关文档
最新文档