统计的假设检验概述
统计学中的假设检验方法

统计学中的假设检验方法统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有着广泛的应用。
假设检验是统计学中的一种重要方法,用于验证关于总体参数的假设。
本文将介绍假设检验的基本概念、步骤以及一些常见的应用案例。
一、假设检验的基本概念假设检验是通过对样本数据进行分析,以判断总体参数是否符合某种假设。
在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1)。
原假设通常是我们要证伪的假设,而备择假设则是我们要验证的假设。
在假设检验中,我们需要选择一个适当的统计量作为检验统计量。
这个统计量的取值将决定我们对原假设的接受或拒绝。
通常,我们会根据样本数据计算出一个检验统计量的观察值,并将其与一个临界值进行比较,从而得出结论。
二、假设检验的步骤假设检验通常包含以下几个步骤:1. 提出假设:首先,我们需要明确原假设和备择假设。
原假设通常是一种默认的假设,而备择假设则是我们要验证的假设。
2. 选择显著性水平:显著性水平是我们对原假设拒绝的程度的度量。
通常,我们会选择一个显著性水平(通常为0.05或0.01),表示我们愿意犯错的概率。
3. 计算检验统计量:根据样本数据计算出一个适当的检验统计量。
这个统计量的取值将决定我们对原假设的接受或拒绝。
4. 确定拒绝域:根据显著性水平和检验统计量的分布,确定一个拒绝域。
如果检验统计量的观察值落在这个拒绝域内,我们将拒绝原假设。
5. 得出结论:根据样本数据计算出的检验统计量的观察值,以及拒绝域的判断,得出对原假设的接受或拒绝的结论。
三、假设检验的应用案例假设检验在各个领域都有广泛的应用。
下面将介绍一些常见的应用案例。
1. 医学研究:假设检验在医学研究中被广泛应用,用于验证新药物的疗效。
研究人员可以将患者分为实验组和对照组,然后通过对两组数据进行假设检验,来判断新药物是否具有显著的治疗效果。
2. 市场调研:在市场调研中,假设检验可以用于验证一种新产品的市场潜力。
统计学中的假设检验方法

统计学中的假设检验方法统计学中的假设检验方法是一种常见的数据分析技术,用于验证关于总体特征的假设。
通过统计抽样和概率分布的理论基础,可以通过假设检验方法来评估样本数据对于某种假设的支持程度。
本文将介绍假设检验的基本原理、步骤以及一些常见的假设检验方法。
一、假设检验的原理假设检验是基于一个或多个关于总体特征的假设提出的。
一般来说,我们称原假设为零假设(H0),表示研究者对于总体特征没有明确的预期;对立假设(H1或Ha)则用来说明研究者认为存在显著的差异或关联关系。
假设检验的基本原理是通过对抽样分布的计算和统计量进行假设检验,从而得出是否拒绝零假设的结论。
根据样本数据的统计量计算出的P值,可以作为评估假设支持程度的标准。
一般来说,当P值小于显著性水平(一般为0.05)时,我们会拒绝零假设。
二、假设检验的步骤假设检验的步骤一般包括以下几个方面:1. 明确研究问题和假设:首先要明确研究者所关注的问题和假设,以及零假设和对立假设的表述。
2. 选择适当的检验方法:根据样本数据的类型和问题的特征,选择适当的假设检验方法。
常见的假设检验方法包括t检验、卡方检验、方差分析等。
3. 设置显著性水平:根据研究者对错误接受零假设和拒绝真实假设的容忍度,设置显著性水平。
一般来说,0.05是常用的显著性水平。
4. 计算统计量和P值:根据样本数据计算统计量,并通过统计分布计算对应的P值。
P值表示了在零假设成立的情况下,获得观察到的统计量或更极端结果的概率。
5. 做出结论:根据P值和显著性水平的比较,得出是否拒绝零假设的结论。
如果P值小于显著性水平,我们会拒绝零假设,认为样本数据支持对立假设;反之,我们无法拒绝零假设。
三、常见的假设检验方法1. 单样本t检验:单样本t检验用于比较一个样本的平均值是否显著不同于一个已知的总体平均值。
适用于连续型数据,例如身高、体重等。
2. 独立样本t检验:独立样本t检验用于比较两个独立样本的平均值是否显著不同。
如何进行统计学中的假设检验

如何进行统计学中的假设检验统计学中的假设检验是一种常用的统计分析方法,用于判断样本数据与总体参数之间是否存在显著差异。
通过假设检验,我们能够对总体参数进行推断,从而得出关于总体的结论。
本文将介绍假设检验的基本概念、步骤和常见方法。
一、基本概念1. 总体和样本:在统计学中,总体是指我们研究的对象的全体,样本是从总体中抽取出的一部分观测值。
2. 假设:在假设检验中,我们对总体参数提出一个假设,称为原假设(H0),并提出与原假设相对的另一个假设,称为备择假设(H1或Ha)。
3. 检验统计量:假设检验的核心是计算一个统计量,用于评估样本数据与原假设之间的差异。
4. 拒绝域和接受域:通过设定一个显著性水平(α),我们可以确定一个拒绝域,如果计算得到的检验统计量落在拒绝域内,则拒绝原假设,否则接受原假设。
二、步骤进行假设检验的一般步骤如下:1. 建立假设:根据研究问题,明确原假设和备择假设。
2. 选择显著性水平:根据研究的要求和具体情况,选择合适的显著性水平(通常为0.05或0.01)。
3. 计算检验统计量:根据抽取的样本数据和假设检验的方法,计算得到相应的检验统计量。
4. 确定拒绝域:根据显著性水平和检验统计量的分布,确定相应的拒绝域。
5. 判断结论:将计算得到的检验统计量与拒绝域进行比较,若检验统计量在拒绝域内,则拒绝原假设,否则接受原假设。
6. 给出推断:根据判断的结果,给出对总体参数的推断,并进行解释和讨论。
三、常见方法在进行假设检验时,可以根据具体问题和数据类型选择不同的方法。
下面介绍几种常见的假设检验方法。
1. 单样本均值检验:适用于对单个总体均值进行推断。
通过比较样本均值与已知的总体均值,判断样本是否与总体存在显著差异。
2. 双样本均值检验:适用于对两个总体均值进行比较。
可以根据两个样本的差异,判断两个总体均值是否存在显著差异。
3. 单样本比例检验:适用于对单个总体比例进行推断。
通过比较样本比例与已知的总体比例,判断样本是否与总体存在显著差异。
统计学中的假设检验

统计学中的假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。
在统计学中,假设检验是一种常用的方法,用于验证对于某一总体的某一假设是否成立。
假设检验在科学研究、商业决策以及社会调查等领域都有广泛的应用。
本文将介绍假设检验的基本概念、步骤和常见的统计方法。
一、假设检验的基本概念假设检验是基于样本数据对总体参数进行推断的一种方法。
在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1),然后根据样本数据来判断是否拒绝原假设。
原假设通常是我们希望证伪的假设,而备择假设则是我们希望支持的假设。
二、假设检验的步骤假设检验一般包括以下步骤:1. 提出假设:根据研究问题和背景,提出原假设和备择假设。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的犯第一类错误的概率。
通常情况下,显著性水平取0.05或0.01。
3. 收集样本数据:根据研究设计和样本容量要求,收集样本数据。
4. 计算统计量:根据样本数据计算出相应的统计量,如均值、标准差、相关系数等。
5. 判断拒绝域:根据显著性水平和统计量的分布,确定拒绝域。
拒绝域是指当统计量的取值落在该区域内时,我们拒绝原假设。
6. 做出决策:根据样本数据计算出的统计量与拒绝域的关系,判断是否拒绝原假设。
7. 得出结论:根据决策结果,得出对原假设的结论。
三、常见的统计方法在假设检验中,常见的统计方法包括:1. 单样本t检验:用于检验一个样本的均值是否等于某个给定值。
2. 双样本t检验:用于检验两个样本的均值是否相等。
3. 方差分析:用于检验两个或多个样本的均值是否有显著差异。
4. 相关分析:用于检验两个变量之间是否存在线性相关关系。
5. 卡方检验:用于检验观察频数与期望频数之间的差异是否显著。
四、假设检验的局限性假设检验作为一种统计方法,也存在一定的局限性。
首先,假设检验只能提供关于原假设的拒绝与否的结论,并不能确定备择假设的真实性。
统计学中的假设检验

统计学中的假设检验(Hypothesis Testing in Statistics)统计学中的假设检验是一种统计推断方法,用于验证对总体参数或某个结论提出的假设是否是合理的。
它可以用来评估样本数据是否可以支持或反驳特定的假设,从而对研究问题进行分析和决策。
在假设检验中,我们通常提出一个零假设(null hypothesis)和一个备择假设(alternative hypothesis)。
零假设是一种无效假设,即我们认为没有关联或没有差异存在。
备择假设是一种我们希望证明的假设,即存在某种关联或差异。
在进行假设检验时,我们首先收集样本数据。
然后,我们基于这些数据计算一个统计量,该统计量可以用于判断是否可以拒绝零假设。
统计学家们使用最常见的统计量是p值(P-value)。
p值是在给定零假设成立的条件下,观察到结果或更极端结果的概率。
如果p值小于预先设定的显著性水平α(通常为0.05),我们可以拒绝零假设,并接受备择假设。
举例来说,假设我们想要研究某药物对某种疾病的治疗效果。
零假设可以是该药物对治疗效果没有明显影响,备择假设可以是该药物对治疗效果有显著影响。
我们收集了一组患有该疾病的患者,并将其随机分为两组,对其中一组使用药物进行治疗,另一组使用安慰剂进行治疗。
然后,我们比较两组的治疗效果。
通过对比两组的数据,我们可以计算出一个p值。
如果p值小于我们设定的显著性水平α,我们可以拒绝零假设,即药物对治疗效果具有显著影响。
反之,如果p值大于α,我们无法拒绝零假设,即药物对治疗效果没有明显影响。
在假设检验中,还有两种错误可能性:第一类错误和第二类错误。
第一类错误是当真实情况下零假设正确时,我们错误地拒绝了它。
第二类错误是当真实情况下备择假设正确时,我们错误地接受了零假设。
通常,我们在设计假设检验时将第一类错误的概率控制在一个较小的水平上(如0.05),而第二类错误的概率则可能较大。
在实际应用中,假设检验是一种重要的工具,被广泛用于各种领域和学科,如医学研究、社会科学、工程等。
假设检验的名词解释

假设检验的名词解释在统计学中,假设检验是一种通过收集和分析样本数据,用以对总体参数做出统计推断的方法。
简而言之,它帮助我们判断一个统计假设是否在给定的数据中是有效的。
一、什么是假设检验?假设检验是一种从样本推断总体特征的方法,它基于两个互补的假设:原假设(H0)和备择假设(H1或Ha)。
原假设通常是我们要进行推断的现象不存在或没有关联,而备择假设则相反。
通过收集样本数据并使用适当的统计方法,我们根据样本数据对两个假设进行比较,并得出结论。
二、假设检验的基本步骤假设检验通常分为以下几个基本步骤:1. 陈述原假设和备择假设:在开始假设检验之前,我们需要明确原假设和备择假设。
原假设通常是表达无关联或无效果的假设,备择假设则相反。
2. 选择适当的显著性水平:显著性水平代表了我们作出拒绝原假设的临界值。
通常使用的显著性水平是0.05或0.01,表示我们愿意在5%或1%的概率下犯出错误的可能性。
3. 收集样本数据并进行统计分析:根据采样设计,收集足够数量的样本数据。
然后使用适当的统计方法,如t检验、方差分析或卡方检验等,分析样本数据。
4. 计算检验统计量:根据样本数据和所选择的统计方法,计算出相应的检验统计量。
检验统计量是一个数值,用于度量样本数据与原假设之间的偏差程度。
5. 判断拒绝域:根据所选择的显著性水平和计算的检验统计量,确定拒绝域的范围。
拒绝域是样本数据落在其中,我们将拒绝原假设并接受备择假设的区域。
6. 做出判断和推断:比较计算得到的检验统计量与拒绝域的位置。
如果检验统计量落在拒绝域内,我们拒绝原假设并接受备择假设;否则,我们无法拒绝原假设。
7. 做出结论:根据判断和推断结果,给出对原假设的结论。
结论可以是关于总体参数是否存在、是否有效或是否有差异的。
三、常见的假设检验在实际应用中,有许多不同类型的假设检验方法,以下是其中一些常见的假设检验示例:1. 单样本t检验:用于比较一个样本平均值与一个已知或预期的总体平均值是否存在显著差异。
假设检验的统计学名词解释

假设检验的统计学名词解释统计学是一门研究收集、整理、分析和解释数据的科学。
而在统计学中,假设检验是一种重要的统计方法,用于检验研究中的假设是否符合实际情况。
本文将对假设检验进行详细解释,并探讨其在统计学中的应用。
一、假设检验的概念和基本原理假设检验是通过对样本数据进行统计分析来对某个总体参数的假设进行验证的方法。
在进行假设检验时,我们首先提出一个原假设(H0)和一个备选假设(H1),然后根据样本数据的结果来判断哪个假设更加可信。
原假设通常是对问题的一种默认或无效的假设,而备选假设是我们希望证明的假设。
通过比较样本数据与原假设之间的差异,我们可以得出结论,支持或拒绝原假设。
二、假设检验的步骤和方法进行假设检验通常需要遵循以下步骤:1. 根据问题的实际背景,确定原假设和备选假设。
2. 收集样本数据,并计算样本统计量,如均值、标准差等。
3. 确定检验统计量,如t值、F值等。
这些统计量可以帮助我们评估样本数据与原假设的一致性。
4. 设置显著性水平α,即检验的临界值。
这个值表示我们在拒绝原假设时所允许的错误的概率。
5. 根据计算出的检验统计量和显著性水平,得出检验结果。
如果p值小于显著性水平,我们可以拒绝原假设;否则,我们接受原假设。
在假设检验中,常用的方法包括:1. 单个总体均值检验:用于检验一个总体均值是否等于一个给定的值。
2. 两个总体均值检验:用于比较两个总体均值是否存在显著差异。
3. 方差分析:用于比较两个或多个总体均值是否存在显著差异。
4. 卡方检验:用于检验观察值与理论值之间的差异是否显著。
5. 相关分析:用于分析两个变量之间是否存在相关性。
三、假设检验的应用领域假设检验在各个领域中都有广泛的应用,以下是其中几个典型的应用领域:1. 医学研究:用于判断某种治疗方法的有效性,比如新药是否比现有药物更好。
2. 工程质量控制:用于判断生产过程的稳定性和统计规律性。
3. 金融风险评估:用于评估投资组合的风险和收益。
医学统计学-假设检验概述

二、假设检验应注意的问题
假设检验利用小概率反证法思想,从问题对立面 (H0)出发间接判断要解决的问题(H1)是否成立。在H0 成立的条件下计算检验统计量,获得P值来判断。当P ≤,就是小概率事件。
小概率事件原理:小概率事件在一次抽样中发生 的可能性很小,如果它发生了,则有理由怀疑H0,认 为H1成立,该结论可能犯的错误。
当不拒绝H0时,没有拒绝实际上不成立的H0,这 类错误称为Ⅱ类错误(“存伪”),其概率大小用β 表示。
假设检验中的两类错误
客观实际
拒绝H0
不拒绝H0
H0成立 第Ⅰ类错误(α) 推断正确(1- α)
H0不成立 推断正确(1- β) 第Ⅱ类错误(β)
α与β的关系: 当样本量一定时, α愈小, 则β愈大,反之α愈大,
距法
理论上:
• 总体偏度系数1=0为对称,1>0为正偏态,1<0为负偏态; • 总体峰度系数2=0为正态峰,2>0为尖峭峰,2<0为平阔峰。 • 只有同时满足对称和正态峰两个条件时,才能认为资料服从
假设检验概述
第五章 假设检验概述
第一节 假设检验的分类、论证方法与步骤 一、假设检验的分类 二、假设检验的论证方法 三、假设检验的步骤
第二节 假设检验的两类错误和注意事项 一、Ⅰ型错误和Ⅱ型错误 二、应用假设检验的注意事项
第三节 正态性检验与数据转换 一、正态性检验 二、数据转换
第四节 例题和SPSS电脑实验
P>:不拒绝H0 ,还不能认为差异有统计学意义… P:拒绝H0,接受H1 ,差异有统计学意义…
第二节 假设检验的两类错 误和注意事项
一、Ⅰ型错误和Ⅱ型错误
1. Ⅰ型错误: 当拒绝H0时,可能拒绝了实际上成立的H0,这
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原假设实际上正确,这时我们做出了拒绝原假设的决策,因而
犯了错误.这类错误称为第Ⅰ类错误,也简称为弃真错误.我们无 法排
除犯这类错误的可能性,因此自然希望将犯这种错误的概率控制 在
一定的限度内。事实上,允许犯这类错误的概率最大为α,
即1-置信度, 在显
αP{称为拒显绝著H水0|平H。0 为关于真有}无≤显α著性差异的判断是
假设检验可如下进行: 例如,供应部的IC类材料的平均采购周期为大于50天,公司2001年对
采购流程进行了优化组合,供应部认为流程优化后IC类材料的采购周期 比原先缩短了,现在我们要确认流程优化后采购周期是否缩短了.
大家为了确认这种说法,可以作以下假设:
假设检验 : H0 : ≥ 50
一般把已知的事实设定为原假设.
著水平α之下做出的。
第二种错误 (Type Ⅱ Error)
原假设实际上不正确,这时我们做出了接受原假设的决策,因而
犯了错误.这类错误称为第Ⅱ类错误,也简称为伪错误. 实际上有 差
异,但我们认为“没有差异”,犯这种错误出现的概率.
β风险一般不P能{通接过受统H计0检| H验0直不接真求}得.
3. 使用问题1中的初值,要求将呼叫通话时间降低0.32分钟以达到 5.28分钟的平均值,这种情况下需要多少样本?
样本大小表 (比较2个样本时)
对两个样本已知δ与SIGMA时可利用下表求样本的大小( δ/SIGMA
计算及确定 与)
使用样本容量表需要了解什么?
1.d是需要检验的各平均值之间的差异大小。
性,增加样本大小可以较精确地证明差异。
在作统计假设检验时,如果我们自信地说它们之间有差异时,就尽量 减
少重复地带。
δ
δ
Stat > Power and Sample size > 2-Sample t
输入δ/ SIGMA值
输入1-β 值 输入标准偏差
大部分时 =5% =10%
输入α 值
▪ P-value为多少是好呢?
▪ - 一般 P-value<0.05,就拒绝原假设H0 ▪总得适用 5%的规则吗? ▪ - 不,根据情况可用 1%或 10% ▪ - 适用 1%: 第一种错误引起的损失大时 ▪ - 适用 10%: 损失不深刻时, 第二种错误 引 ▪ 起的损失大时.
在Minitab中我们 进行假设验证,P -value是我们判
H1 : < 50
我们要主张的设为原假设,我们真正 想确认的为备择假设
原假设和备择假设是关于总体的两个对立的解释。要么 原假设为真,要么备则假设为真。
假设检验的一般顺序是…
统计检验的一般顺序
1. 分析问题转化为统计问题 2. 确认目的 3. 进行假设(原假设/备择假设) 4. 选择统计的检验方法 5. 制定α危险度 6. 制定β危险度 7. 制定大家要寻找的δ或差异 8. 确定寻找δ必要的样本大小 9. 确定样本收集方法 10.收集数据 11. 统计的检验 12.以检验结果为基础,做出判断
从总体各抽取2个样本 的平均的分布
从总体各取30个 样本的平均分布.
什么是 P-value?
▪ P-value是原假设H0真实的结论时,我们观察到样本的值有多大的概率 ,简称P值。如果此值小,就下原假设为不真实的结论。统计学上称为
小概率事件,即样本不是从原假设的分布中抽出的。一般P值大于α,
则无法拒绝原假设,相反,P值小于α,则拒绝原假设。
为了加强检验能力,所用的数据要多。
检验统计量(Test Statistics)
– 我们做统计检验后得到的标准化的值(t,f,Chi_square值) 一般跟 P-value意义相同, 如果计算出来的检验统计量大于临界值, 就
采纳对立假设 H1
3. 样本的不正确性
为了解总体的特性,抽取样本时,样本要正确反映总体,受下列 要因的影响.
为什么需要假设检验?
总体:整个集合的全体特征 样本:具有总体特征的子集
根据样本确定总体!!!
总体参数与样本统计
总体参数
样本统计
平均 值
x
标准偏差
s
比例(百分數)
P
p
1. 总体参数(值)是固定的,但不知道。 2. 样本统计值是用来估计总体的特征。
假设是对总体值进行阐述,而不是对样本进行阐述。
假设检验如下…
断的基准
其它用语定义
显著性差异(Significant Difference)
– 统计性假设的结果不能看成是偶然的, 有很大差异时用的记法。
显著水平(Significance level)
– 犯第一零假设的内容与实际有差异时, 可以检验此差异的概率。(1- β)
• 通过从假定相等或没 有变化 (Ho)开始。
• 您通常想表明差异确 实存在的(H1)。
• 如果数据表明它们不相 等,则它们一定存在差 异(Ha)。
单侧检验,两侧检验
备择假设表示检验的特性值的范围在一侧或两侧. ■ 单侧验证(one-sided test)
备择假设中的特性值只在一侧的检验 (ⅰ) H1 : 0 ( 单侧检验 ) (ⅱ) H1 : 0 ( 单侧检验)
啊 !! 为了证明两个总体或几 个总体间之间差异进行 统计检验.
假设检验的种类有哪些?
那么!我们看一下我们经常用的假设检验的种类或什么时候用哪些检 验方法.
均值检验
方差检验
比率检验
· 1-Sample t test · Equal variance · 1-Proportion
检验 · 2-Sample t test test (F test) · 2-Proportion
在许多实际问题中,只能先对总体的某些参数做出可能的假设,然后根 据得到的样本,运用统计的知识对假设的正确性进行判断.这就是所谓 的统计假设检验
先看下面几个事例:
➢康讯生产部有一批用户板,按照规定的标准,单板的合格率应该达 ➢ 到99%,产检科从中任意抽取100件,发现其中有2块单板不合格.请 问 ➢ 这批用户板是否可以移交事业部? ➢供应一部IC类材料的采购日期以前平均为48天,现在对采购流程作 ➢ 了大的调整,收集了3个月IC类材料的采购周期的数据.试问:现在 的 ➢ 采购周期是否比以前缩短了? ➢康讯工艺部去年成立了焊接直通率项目团队,以前单板的焊点不良 ➢ 为98%,经过对工艺方面的改善, 试问:单板的焊点不良 率是否下 降 ➢ 了? ➢2001年度二营与三营不同销售人员的销售额有显著性差异
■ 两侧验证(two-sided test) 备择假设中的特性值在两侧的检验
(ⅲ) H1 : 0 (两侧检验)
双侧检验 单侧左检验 单侧右检验
单侧和双侧检验
/ 2
拒绝范围 (临界值)
无法拒绝HO
拒绝范围
/ 2
(临界值)
无法拒绝HO
拒绝范围 (临界值)
拒绝范围 (临界值)
无法拒绝HO
样本数选定错误时我们有可能无法得到我们想知道的。
d /SIGMA → d与 间的比率
d是指2个或1个的平均和一个基准值间的差异 SIGMA(s)是从样本分布得出的样本标准偏差.
d/大时,没有必要做统计检验可以说两个总体不同,因为差异( d )
很大.一般数据的分散()大时,有时证明差异较困难,为减少不真 实
真条件
无差异
有差异
真条件
无差异
有差异
无差异
统计的条件
不同
正确的 决定
第一种 错误 α
第二种 误差 β
正确的 决定
无差异
统计的条件
不同
正确的 决定
第一种 错误 α
第二种 误差 β
正确的 决定
什么是“显著性的(Significant)差异”?
显著性差异 (Significant Difference) :用于描述统计假设检验结 果的术语,即:差异大得不 能合理地归因于偶然因素。
样本或一个样本和一个基准值之间的差 异,
N=2样本的分布
从而断定总体是否存在差异。
在这里我们观察一下平均差异。样本的 大小
增加,对推断的平均值的标准偏差 (SE Mean)减少, 其结果我们发现差异的信息更多
d
N=30样本的分布
我们做出的判断更有可信性。
在右图表中n=2时理论分布的很多部 分都被重复。即无法区分属于哪一 个分布。
“备择假设”假定有差异或有关系.大部分的统计检验实际评价的 就是
原这假个设假(n设ull hypothesis) : H0
假设检验的起点是零假设-- H0。 H0是相同或没有差异的假设。 举例:总体均值等于检验均值。
备择假设(alternative hypothesis) : H1
第二条假设是H1-- 备择假设,即差异假设。 举例:总体均值不等于检验均值。
种类 · Paired t test
· Chi-square
· ANOVA
test
样本为正态分布时 主要 使用 使用的 了解一个或几个总体 情况 的平均值是否一致时
使用
了解一个或几个总体 的方差是否一致 时使用
了解一个或几个总体 的比率是否一致时 使用
数据 形态
连续型数据
离散型数据
假设检验如何与实际问题相结合?
• 抽样方法 • 样本间的变动 • 样本的大小
根据样本的判断总有可能出现错误,所以在假设检验时,错误发生 的事前管理是非常重要的.
在这种情况下,需要多少样本数据,有可能达到多少程度的准确性呢? 因此在假设检验中,应提前制定误差的允许范围,并按照其基准, 决定采纳或放弃假设。