电路第三章 电阻电路的一般分析 教案

合集下载

第三章 电阻电路的一般分析

第三章  电阻电路的一般分析

第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。

方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。

本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。

3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。

解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。

图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。

图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。

(完整版)电路(第五版)._邱关源原著_电路教案,第3章

(完整版)电路(第五版)._邱关源原著_电路教案,第3章

第3章 电阻电路的一般分析● 本章重点1、独立independent KCL 、KVL 方程equations 个数;2、支路法列方程construct equations 解电路;3、网孔法列方程解电路analyse circuit ;4、回路法列方程解电路;5、节点法列方程解电路.● 本章难点1、含有理想电源Ideal Power 的回路法Loop method ;2、含有受控源Controlled source 的回路法;3、含有理想电源的节点法node method ;4、含有受控源的节点法。

● 教学方法本章主要讲述电阻电路的一般分析方法,即方程法。

本章采用讲授为主,自学为辅的教学方法,共需6课时.对独立KCL 、KVL 方程个数确定,可以自学;有关图论Graph 的内容,在15章统一讲解;对支路法、网孔法、回路法、节点法在不同情况下如何建立方程等重点和难点内容,课堂上要讲解透彻,课下布置一定的作业,使学生加深对内容的理解并牢固掌握。

为使学生能区分各方法的优点和应用对象,可采用一个电路用不同的方法来分析。

● 授课内容 3.1 支路法一、支路电流法以支路电流为未知量,根据KCL 、KVL 列关于支路电流的方程,进行求解的过程.图3—1仅含电阻和电压源的电路第1步 选定各支路电流参考方向,如图3—1所示. 第2步 对(n -1)个独立节点列KCL 方程如果选图3—1所示电路中的节点4为参考节点,则节点1、2、3为独立节点,其对应的KCL 方程必将独立,即:1 0431=+-I I I 2 0521=+--I I I 3 0632=-+I I I 第3步.对)1(--n b 个独立回路列关于支路电流的KVL 方程U s33 3Ⅰ:014445511=--++s s U I R U I R I R Ⅱ:05566222=--+-I R I R U I R s Ⅲ:033366444=+-+-I R U I R U I R s s 第4步.求解3。

第03章电阻电路的一般分析

第03章电阻电路的一般分析

例3 列支路电流法方程。
a
解:
I1 7
+ 70V

I2
1+
5U
_
7 I3 11 +
U 2-
节点a: –I1–I2+I3=0 回路1: 7I1–11I2 - 70 +5U =0 回路2: 11I2+7I3 - 5U =0 增补方程:
b
U=7I3
(1-18)
§3.4 网孔电流法
网孔电流——假想每个网孔中有一个网孔电流。方向可 任意假设。
(1-22)
理想电流源(恒流源)支路的处理
①若恒流源支路仅有一个网孔电流穿过,则该网孔电 流= ± 该恒流源电流(同方向取+,否则取-)。 ②非上述情况时:设恒流源两端电压,当作恒压源列方 程。然后增补恒流源电流与网孔电流的关系方程。
例2 列网孔电流方程。
R1
R2 im2 I3s
+ im1 I5s
第三章
电阻电路的一般分析
重点: 1.支路电流法; 2. 网孔电流法; 3.回路电流法; 4.节点电压法。
对于简单电路,通过电阻串、并联关系或 Y—△等效变换关系即可求解。如:
i总 R
R
R i=?
+
-u
2R
2R
2R 2R
i总
i总

u 2R
+
- u 2R
111 u i i总 2 2 2 16R
例4 列网孔电流方程。
解:网孔电流方向如图所示。 (R1 + R3)i1-R3i3=-U2
+
U1 _
R1
iS
R3 i1
+

第3章 电阻电路的一般分析

第3章 电阻电路的一般分析
2 3
解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2

电路课件 电路03 电阻电路的一般分析

电路课件 电路03 电阻电路的一般分析

• 任一个具有n个结点的连通图,它的任何一个 树的树支数为(n-1)。
第三章 电阻电路的一般分析 3-2 KCL和KVL的独立方程数
2020/7/22
14
基本回路组
• 图G任意一个树,加一个连支形成 一个回路,除加连支均由树支组 成,称单连支回路或基本回路。
• 图3-5a图G,取(1,4,5)为树, 图b,连支(2,3,6)。该树基本 回路(1,3,5),(1,2,4,5)和 (4,5,6)。
• 可见这3个回路方程相互不独立, 任一个方程可由其他2个方程导 出。3个回路中只有2个独立回 路。
第三章 电阻电路的一般分析 3-2 KCL和KVL的独立方程数
2020/7/22
11
“树”的概念
• 一个图回路数很多,确定独立回路不容易。 用“树”寻找独立回路组,得独立KVL方程组。
• 树的定义:包含图G的全部结点且不包含任何回 路的连通子图。
i1-i4-i6=0 -i1-i2+i3=0
i2+i5+i6=0 -i3+i4-i5=0
• 所有KCL方程中,每支路电流出现2次,一为正, 一为负。4个方程相加,等号两边为零。即4个 方程不是相互独立,但任意3个独立。
• 可证明,对n结点电路,在任意(n-1)个结点上 可得出(n-1)个独立KCL方程。相应(n-1)个结 点称独立结点。
b。按参考方向及回路绕行方向,计及编号,
列KVL方程:
回路1
u1+u3+u5=0
回路2
u1-u2+u4+u5=0
回路3
-u4-u5+u6=0
这是一组独立方程。
第三章 电阻电路的一般分析 3-2 KCL和KVL的独立方程数

《电路》课件:第三章 电阻电路的一般分析方法

《电路》课件:第三章  电阻电路的一般分析方法
总目录 章目录 返回 上一页 下一页
一、 KCL的独立方程数: (n-1)
对此电路的图,列KCL:
node1 : i3 i1 0 node 2 : i1 i2 0
i2 i3
0
node 3 : i3 i2 0
说明:方程组不独立。 0 0
因为每条支路都与两个结点相连,支路电流必然从某结点流出,
b-n+1=3
总目录 章目录 返回 上一页 下一页
① + uS1R1
i6 R6 i2 R2 ② i4 R4
i1
R3 iS5
i3


KCL:(独立方程数n-1=3)
i5
node 1: -i1+ i2 + i6 =0 node 2: -i2- i3 + i4 =0 n-1=3
R5 node 3: -i4- i6 + i5 =0 <1>
i3
2.VCR:(独立方程数b=6)
R5 u1= i1R1- us1 u2= i2R2
u3= i3R3
u4= i4R4 b=6

u5= (i5+is5)R5 u6= i6R6
3.KVL:(独立方程数 b-n+1=3) 选自然网孔
loop1: u1+ u2 - u3 =0 loop 2: u3 + u4 + u5 =0 loop 3: u6 - u4 - u2 =0
二、 KVL的独立方程数
如何确定独立回路 连通图G
此图共有13个回路,可列出13个 KVL方程,方程独立否?
共有8条支路,u、i共16个未知数,
需要16个独立方程
KCL:4个独立方程
VCR:8个独立方程

第6讲 第三章 电阻电路的一般分析(一)

第6讲 第三章 电阻电路的一般分析(一)

2. 独立方程的列写
1.从电路的n个结点பைடு நூலகம்任意选择n-1个结点列写KCL方程 2.选择基本回路列写b-(n-1)个KVL方程
n=4 b=6
当一条支路仅含电流源而不存 在与之并联的电阻时,无法将 支路电压以支路电流表示
元件VCR
KCL
求解
KVL
3. 支路电流方程的列写步骤
• 标定各支路电流(电压)的参考方向; • 从电路的n个结点中任意选择n-1个结点列写KCL方程 • 选择基本回路,结合元件的特性方程列写b-(n-1)个KVL方程 求解上述方程,得到b个支路电流; • 进一步计算支路电压和进行其它分析 需要注意的是: 支路电流法列写的是 KCL和KVL方程,所以方程列写 方便、直观,但方程数较多,宜于利用计算机求解。人工 计算时,适用于支路数不多的电路。 若将支路的电流用支路电压表示,然后带入KCL方程,连 同支路电压的KVL方程,可以得到以支路电压为变量的b个方程 ——支路电压法
第六讲 电阻电路的一般分析 (一)
• 知识点:
1. 电路的图 2. KCL和KVL的独立方程数 3. 支路电流法、网孔电流法
• 教学目标:
1. 了解电路分析中一些常用的名词 2. 掌握KCL和KVL的独立方程数及其在电路求解中的应用 3. 理解支路电流法、网孔电流法进行电路分析的一般思路
1
电路的图
-I1-I2+I3=0 7I1-11I2+35I3=70 11I2-28I3=0
支路电流法特点: • 支路电流法是最基本的方法,在方程数目不多的情况下可以 使用,由于支路电流法需要同时列写KCL和KVL方程,方程 数较多,且规律性不强,手工求解比较繁琐,也不便于计算 机编程求解。
网孔电流法

电工技术-电子教案 第3章 电阻电路的一般分析方法

电工技术-电子教案  第3章 电阻电路的一般分析方法

3.2 回路电流法(续6)
例1 试用网孔电流法求图示电路各个支路电流。
解: 选三个网孔为独立回路, 网孔电流分别为 im1 、 im2 及 im3 。 可写出网孔方程为
解此方程得
im11A, im20.5A, im31.5A
各支路电流为 i1im11A, i2im1im20.5A
3.2 回路电流法(续7)
回路电流法
回路电流法是以各回路电流作为未知变量来列写电路方程,
Байду номын сангаас
并求解回路电流,进而求取各支路电流和支路电压的方法。此 时所得方程称为回路方程。 只需对独立回路列写KVL方程,方程数为b- ( n-1)。 回路电流是假设的沿着每个回路边界构成的闭合路径自行流 动的电流。 支路电流等于流经该支路的回路电流的代数和。 若所选回路正好是网孔,则以各网孔电流作为未知变量来列 写电路方程,并求解网孔电流,进而求取各支路电流和支路电
压的方法称为网孔电流法。
3.2 回路电流法(续1)
回路方程的列写
该电路有6条支路、4个节点,因 此,该电路的独立回路所包含的回 路数为3。选回路1、2、3为独立回 路,这3个回路的回路电流分别用il1 、 il2 、 il3表示,则各支路电流与回 路电流的关系为
3.2 回路电流法(续2)
以回路电流为电路变量,对回路1、2 、3列写KVL方程
联立解得

3.3 结点电压法
结点电压法
结点电压法是以各结点电压作为未知变量来列写电路方程,
并求解结点电压,进而求取各支路电压和支路电流的方法。此 时所得方程称为结点方程。 只需对独立结点列写KCL方程,方程数为n-1。 在电路中任意选择某一节点为参考节点,则其它节点与参考 节点之间的电压称为节点电压,其参考方向由其它节点指向参 考节点。 任一支路都连接在两个节点上,所以支路电压等于节点电压 或相关两个节点电压之差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)网孔电流法的特点: 仅适用于平面电路。
返回 上页 下页
3-5 回路电流法
1.回路电流法
以基本回路中沿回路连续流动的假想电流为未 知量列写电路方程分析电路的方法。它适用于平面 和非平面电路。 列写的方程
回路电流法是对独立回路列写KVL方程,方
程数为 b (n 1)
注意 与支路电流法相比,方程数减少n-1个。
(2)回路法的特点: ①通过灵活的选取回路可以减少计算量。 ②互电阻的识别难度加大,易遗漏互电阻。
返回 上页 下页
3.理想电流源支路的处理
引入电流源电压,增加回路电流和电流源电流的
关系方程。
例5-2 列回路电流方程。
(RS R1 R4 )i1 R1i2 R4i3 US
R1i1 (R1 R2 )i2 U
3 i4 i5 i6 0
34
i6 取网孔为独立回路,沿顺时针
R6 + uS –
方向绕行列写KVL方程如下
回路1 u2 u3 u1 0
回路2 u4 u5 u3 0
回路3 u1 u5 u6 uS 0
返回 上页 下页
这一步可 以省去
2
回路1 u2 u3 u1 0 回路2 u4 u5 u3 0
⑴图的定义(Graph)
G={支路,结点}
①图中的结点和支路各自是一个整体。 ②移去图中的支路,与它所连接的结点依然
存在,因此允许有孤立结点存在。 ③如把结点移去,则应把与它连
接的全部支路同时移去。
返回 上页 下页
(2)路径 (3)连通图
从图G的一个结点出发沿着一些支 路连续移动到达另一结点所经过的 支路构成路径。
返回 上页 下页
R i11 l1 R i 12 l2 R i1l ll uSl1 R21il1 R i 22 l2 R i2l ll uSl 2 R il1 l1 R il2 l2 R ill ll uSll
注意 Rkk: 自电阻(总为正) Rjk: 互电阻
+ : 流过互阻的两个网孔电流方向相同;
3-6 结点电压法
返回 上页 下页
i1
+ uS1

R1 i2 il1 + uS2 –
R2 il2
列写的方程
i3
独立回路数为2。选图
R3
示的两个网孔为独立回路, 支路电流可表示为
i1 il1 i3 il2
i2 il2 il1
网孔电流在网孔中是闭合的,对每个相关结 点均流进一次,流出一次,所以KCL自动满足。 因此网孔电流法仅对网孔回路列写KVL方程,方 程数为网孔数。
- : 流过互阻的两个网孔电流方向相反; 0 : 无关。
返回 上页 下页
例4-1 用网孔电流法求解电流 i。
解 选网孔为独立回路:
(RS R1 R4 )i1 R1i2 R4i3 US
R1i1 (R1 R2 R5 )i2 R5i3 0
R4i1 R5i2 (R3 R4 R5 )i3 0
负号;反之取正号。
i1
方程的标准形式:
+
R i11 l1 R i21 l1
R i 12 l2 R i 22 l2
uSl1 uSl 2
uS1 –
R1 i2 il1 + uS2 –
R2 il2
i3 R3
对于具有 l 个网孔的电路,有:
R i11 l1 R i 12 l2 R i1l ll uSl1 R21il1 R i 22 l2 R i2l ll uSl 2 R il1 l1 R il2 l2 R ill ll uSll
2. 独立方程的列写
①从电路的 n个结点中任意选择 n-1个结点列写
KCL方程。 ②选择基本回路列写 b-( n -1)个KVL方程。
返回 上页 下页
例3-1 2
解 有6个支路电流,需列写6个方
R2 i2
i3
R4 程。KCL方程为
i4
1 i1 i2 i6 0
1
1
2
3
R1 i1
R3
i5
R5
2 i2 i3 i4 0
R4i1 (R3 R4 )i3 U RS
方程中应包括
+
电流源电压
US
_
增补方程: IS i2 i3
i1
R1
IS
i2
R2
R4 + Ui3
_ R3
返回 上页 下页
4.受控电源支路的处理
对含有受控电源支路的电路,可先把受控源 看作独立电源按上述方法列方程,再将控制量 用回路电流表示。
返回 上页 下页
1 43
6
5
4
对网孔列KVL方程:
1 u1 u3 u4 0 3 2 u2 u3 u5 0
3 u4 u5 u6 0
1 - 2 u1 u2 u4 u5 0
注意 可以证明通过对以上三个网孔方程进行
加、减运算可以得到其他回路的KVL方程。
返回 上页 下页
结论 ①KVL的独立方程数=基本回路数= b-( n-1)。
注意 Rkk: 自电阻(总为正)。
Rjk:
互电阻
+ : 流过互电阻的两个回路电流方向相同; - : 流过互电阻的两个回路电流方向相反;
0 : 无关。
返回 上页 下页
小结 (1)回路法的一般步骤:
①选定l=b-(n-1)个独立回路,并确定其绕行方向。 ②对l 个独立回路,以回路电流为未知量,列写
其KVL方程。 ③求解上述方程,得到 l 个回路电流。 ④求各支路电流。 ⑤其他分析。
回路3 u1 u5 u6 uS 0
应用欧姆定律消去支路电压得
R2 i2
i3
R4 i4
1
1
R3 2
3
R1 i1
i5 R5
34
i6
R2i2 R3i3 R1i1 0 R4i4 R5i5 R3i3 0 R1i1 R5i5 R6i6 uS
R6 + uS –
返回 上页 下页
小结 (1)支路电流法的一般步骤:
方法的基础
• 电路的连接关系——KCL,KVL定律。 • 元件的电压、电流关系特性。 复杂电路的一般分析法就是根据KCL、KVL及元 件的电压与电流关系列方程、解方程。根据列方程时 所选变量的不同可分为支路电流法、网孔电流法和结 点电压法。
返回 上页 下页
3-1 电路的图
1.网络图论 图论是拓扑学的一个分支,是富有 趣味和应用极为广泛的一门学科。
i3 R3
网孔1、网孔2之间的互电阻。
uSl1= uS1-uS2 网孔1中所有电压源电压的代数和。 uSl2= uS2 网孔2中所有电压源电压的代数和。
注意 ①自电阻总为正。
②当两个网孔电流流过相关支路方向相同
时,互电阻取正号,否则取负号。
返回 上页 下页
③当电压源电压方向与该网孔电流方向一致时,取
返回 上页 下页
2. 方程的列写 网孔1: R1 il1+R2(il1- il2)-uS1+uS2=0 网孔2: R2(il2- il1)+ R3 il2 -uS2=0
整理得:
(R1+ R2) il1-R2il2=uS1-uS2 - R2il1+ (R2 +R3) il2 =uS2
i1
+ uS1

② n个结点、b条支路的电路, 独立的KCL和KVL方 程数为
(n 1) b (n 1) b
返回 上页 下页
3-3 支路电流法
1. 支路电流法
以各支路电流为未知量列写 电路方程分析电路的方法。
对于有 n个结点、b条支路的电路,要求解支路
电流,未知量共有 b个。只要列出b个独立的电路方
程,便可以求解这b个未知量。
1.KCL的独立方程数 1 i1 i4 i6 0
2
1
2
2 i1 i2 i3 0
1
3 4
3
6
5
3 i2 i5 i6 0
4 i3 i4 i5 0
4
1 + 2 + 3 + 4 =0
结论
n个结点的电路, 独立的KCL方程为 n-1个。
返回 上页 下页
2.KVL的独立方程数
2
1
2
个结点关联2条支路。
回路 23
12 75
5
84
不 是 回 路
①对应一个图有很多的回路。
明 ②基本回路的数目是一定的,为连支数。 确 ③对于平面电路,网孔数等于基本回路数。
l bl b (n 1)
返回 上页 下页
基本回路(单连支回路) 基本回路具有独占的一条连支
6 45
2
1
3
结论
5 2
1
3
6
2

不 是 树 树支:构成树的支路 连支:属于G而不属于T的支路
明确 ①对应一个图有很多的树
②树支的数目是一定的 bt n 1
连支数: bl b bt b (n 1)
返回 上页 下页
②回路(Loop)
L是连通图的一个子图,构成一条 闭合路径,并满足:(1)连通;(2)每
1 23 75
6 84
第三章 电阻电路的一般分析
本章重点
3-1 电路的图 3-2 KCL和KVL的独立方程数 3-3 支路电流法 3-4 网孔电流法 3-5 回路电流法 3-6 结点电压法
首页
重点 1. KCL、KVL的独立方程数 2. 网孔电流法,结点电压法
返回
线性电路的一般分析方法 • 普遍性:对任何线性电路都适用。 • 系统性:计算方法有规律可循。
图G的任意两结点间至少有一条路 径时称为连通图,非连通图至少存 在两个分离部分。
相关文档
最新文档