捷联惯导系统陀螺罗经对准性能的协方差分析

捷联惯导系统陀螺罗经对准性能的协方差分析
捷联惯导系统陀螺罗经对准性能的协方差分析

捷联惯导系统粗对准方法比较

捷联惯导系统粗对准方法比较 魏春岭 张洪钺 北京航空航天大学自动化科学与电气工程学院 北京 100083 摘 要 通过误差分析对三种捷联惯导系统解析粗对准方法进行了比较。指出在 相同的传感器精度条件下,利用正交向量计算捷联矩阵比传统方法有更高的对准 精度,直接计算法不仅精度高,而且计算简单,更适合工程应用。 主题词 捷联惯导系统 解析粗对准 Comparison of Analytic Coarse Alignment Methods Wei Chunling Zhang Hongyue Beijing University of Aeronautics and Astronautics,Beijing100083 Abstract Three analytic coarse alignment methods to strapdo wn inertial navigation system are com pared via error analysis.The later two are superior to the traditional one because their east level dri f t misalignment angles are not corrupted b y gyro uncertainty.Due to its high ac- curacy and com putation e ff iciency,the direct method is more suitable for practical applica- tions. Subject terms Strapdown inertial navigation systems Analytic coarse alignment 作为一种航迹推算系统,惯性导航系统对初始解算条件有较高要求,初始对准误差会直接影响导航的精度。对于捷联式惯性导航系统,初始对准的目的就是要确定捷联矩阵C n b。解析粗对准就是利用加速度计和陀螺仪对重力加速度和地球自转角速度的测量值估算C n b,为精对准提供初始条件,因此选择算法简单、精度更高的粗对准方法有其实际意义。本文通过误差分析与计算机仿真比较了三种解析粗对准方法,指出直接计算法更适合工程应用。 1 解析粗对准方法 假定当地纬度 已知,地理系采用东北天坐标系,则重力加速度g和地球自转角速度 收稿日期 1999年12月 16

激光陀螺仪介绍

激光陀螺仪 Image:11814415179160472.jpg 激光陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可*等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪基本上就是运用物体高速旋转时,角动量很大,旋转轴会一直稳定指向一个方向的性质,所制造出来

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作

激光陀螺仪综述

激光陀螺仪综述 姓名:学号:2010 1、激光陀螺仪概述 现代陀螺仪是一种能够精确的定位运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了许多方面的制约。 2、激光陀螺仪的原理及分类 2.1激光陀螺仪的原理 激光陀螺仪的原理是利用光程差来测量旋转角速度( Sagnac 效应)。在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射和一个半透明镜。用高频电源或直流电源激发混合气体,产生单色激光。为维持路谐振,回路的周长应为光波波长的整数倍。用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。 2.2激光陀螺仪的分类 激光陀螺原理上根本不同于普通的机电式陀螺。常规机电转子陀螺依据普通的刚体力学原理按照机械储能方式工作,而激光陀螺是以双向行波的环形激光器为核心的量子光学仪表,其依据基于广义相对论的Sagnac效应。所谓的Sagnac 效应是指在任意几何形状的闭合光路中,从某一观察点出发的一对光波沿相反方向运行一周后又回到该观察点时,这对光波的相位将由于该闭合环形光路相对于惯性空间的旋转而不同。其相位差(或光程差)的大小与闭合光路的转动速率成正比。激光谐振腔内的相位差又可以成为放大数百万倍的频率差,这样就可以通过测量光电信号的频率来测量物体的角速度、角度等。

捷联式惯导系统误差解析解研究

第22卷 第11期计 算 机 仿 真2005年11月 文章编号:1006-9348(2005)11-0042-04 捷联式惯导系统误差解析解研究 张宾,刘藻珍 (北京理工大学机电工程学院,北京100081) 摘要:该文在一定的假设条件下利用捷联惯导系统的三维误差状态模型求解出了单通道误差状态方程的解析解,列表给出 了各误差源对于某一特定误差状态的动态影响。然后利用某型导弹的弹道数据通过对两种误差模型在同一条件下进行仿 真的方法验证了单通道误差状态方程解析解的正确性。单通道误差模型对分析各种误差源对系统的影响,确定在满足系统 精度要求的条件下主要误差源的选择范围,进行系统精度分配提供了十分方便直观的方法。 关键词:捷联;误差模型;误差分析 中图分类号:V249.32 文献标识码:A Research on the Error Ana lyti c Soluti on of Strapdown I nerti a l Nav i ga ti on System ZHANG B in,L I U Zao-zhen (School of Mechanical Electr onic Engineering,Beijing I nstitute of Technol ogy,Beijing100081,China) ABSTRACT:I n this paper,err or state model of strapdown inertial navigati on syste m(SI N S)is educed and analytic s oluti on t o monochannel err or state equati on is worked out under the conditi on of certain hypotheses.The lists of the effect of each err or s ource t o a given err or status are p r ovided when SI N S is in the state of moving.The correctness of analytic s oluti on t o monochannel err or state equati on is validated by the means of t w o err or models’si m ulati on excer p2 ting the same actual traject ory data of a certain type m issile.Monochannel err or model gives a convenient and intu2 iti onistic way t o analyze the effect of all kinds of err or s ources t o the system,deli m it the selective range of main err or s ource which can meet the requirement of the syste m accuracy and all ot syste m accuracy. KE YWO RD S:Strapdown;Err or model;Err or analysis 1 引言 在导航过程中,希望惯导系统能准确地提供各种导航信 息。但各种误差源的存在,使导航信息具有一定的误差。本 文在一定的假设条件下利用捷联惯导系统的三维误差状态 模型求解出了单通道误差状态方程的解析解,列表给出了各 误差源对于某一特定误差状态的动态影响。然后利用某型 导弹的弹道数据通过对两种误差模型在同一条件下进行仿 真的方法验证了单通道误差状态方程解析解的正确性。 单通道误差模型对分析各种误差源对系统的影响,确定 在满足系统精度要求的条件下主要误差源的选择范围,进行 系统精度分配提供了十分方便直观的方法。 2 捷联惯导误差模型 当地水平坐标系(L)中,捷联惯导系统力学编排方程计 算输出的状态变量包括:大地坐标(φ,λ,h),运动速度(V e , V n,V u)及姿态信息(r,p,y)等量。此时相应的误差状态向量 δX(t)=[

二频机抖激光陀螺捷联惯导系统快速对准方法

收稿日期:2013-06-17;修订日期:2013-07-15 作者简介:高春峰(1989-),男,硕士生,主要从事激光在惯性导航技术中的应用研究。Email:neil1989@https://www.360docs.net/doc/1115229520.html, 导师简介:谢元平(1971-),男,副教授,硕士生导师,博士,主要从事惯导器件及光电检测技术方面的研究。Email:xyp99999@https://www.360docs.net/doc/1115229520.html, 二频机抖激光陀螺捷联惯导系统快速对准方法 高春峰,魏国,谢元平,李耿,刘灿 (国防科学技术大学光电科学与工程学院,湖南长沙410073) 摘要:以教研室自行研制的90型二频激光陀螺捷联惯导系统为研究对象,详细分析了惯性系对准在静态及摇摆基座条件下的收敛时间、对准精度。理论分析表明,具体对准时间的取值应该根据IMU 精度、算法参数设定以及扰动情况而定。经大量实验验证,静态条件下,对准150s 左右航向角收敛到稳态值,此时横摇和俯仰角振荡在1.5″以内,航向角振荡在1′以内;摇摆基座条件下,对准200s 后输出横摇角和俯仰角误差在7″以内,航向角误差在1.5′以内。实验结果充分证明了惯性系对准可以满足在短时间内输出姿态角达到一定精度范围的要求,具有良好的工程应用价值。关键词:激光陀螺;惯性系对准;收敛时间;摇摆实验中图分类号:TN249文献标志码:A 文章编号:1007-2276(2014)02-0375-07 Fast alignment of mechanically dithered ring laser gyro SINS system Gao Chunfeng,Wei Guo,Xie Yuanping,Li Geng,Liu Can (College of Optoelectronic Science and Engineering,National University of Defense Technology,Changsha 410073,China)Abstract:For study of the 90-type mechanically dithered ring laser gyro SINS system which is self -developed by the authors ′department,this article detailed analyzed the convergence time and alignment precision of inertial alignment on static base and swing base.Theoretical analysis shows,the value of the alignment time should basis on the IMU accuracy,settings of the algorithm parameter and the disturbance situation.Through a large number of experiment,on static base,it takes 150s for the heading angle reaches a steady state value,and then the oscillation amplitude of the roll angle and pitch angle are lower than 1.5″,the heading angle oscillating is within 1′;on swing base,after 200s,the error of the roll angle and pitch angle are lower than 7″,the error of heading angle is within 1.5′.Results confirm that the inertial alignment can meet the requirement of reaching a certain attitude angle accuracy range within a short time,and can be well used in engineering applications. Key words:RLG;inertial alignment;convergence time;swinging experiment 第43卷第2期 红外与激光工程2014年2月Vol.43No.2Infrared and Laser Engineering Feb.2014

捷联惯导详细讲解

捷联惯导系统从20世纪60年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装臵,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-downinertialnavigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。 一、捷联惯导系统工作原理及特点 惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位臵信息等。 捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位臵参数。如采用指令+捷联式惯导 捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位臵信息

来确定运载体的方位、位臵和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。 除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。同时,从姿态矩阵的元素中提取姿态和航向信息.由此可见,在捷联惯导系统中平台的作用已由计算机及其软件的作用代替了,捷联式惯导系统采用的是数学平台。力学编排就是按照合适的数学模型由观测量计算出导航定位参数。具体地讲,利用陀螺仪测得的载体相对于惯性参照系的旋转角速度,计算出载体坐标系至导航计算坐标系之问的坐标转换矩阵;将测量的比力(加速度计测量载体相对于惯性空间的线加速度)变换至导航坐标系,并经过两次积分得到所需的速度位臵信息。 二、捷联惯导系统有以下独特优点: (1)去掉了复杂的平台机械系统,系统结构极为简单,

激光陀螺简介讲解

激光陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。 简介 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可*等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。分类 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环

捷联惯性技术的发展及与平台惯导系统的对比

捷联惯性技术的发展及与平台惯导系统的对比 [2009-06-20] 作者:admin 来源: 1.惯性技术与惯性导航的概述 惯性技术是惯性导航技术、惯性制导技术、惯性仪表技术、惯性测量技术以及惯性测试设备和装置技术的统称。它已有四十多年的发展历史了。由于惯性技术的自主性等特点,它不需要引人外界信息便可实现制导于导航。所以,它在国防科技中占有非常重要的地位,广泛的运用于航天、航空、航海等军事领域;随着惯性技术和计算机技术的不断发展以及成本降低,许多国家将其应用领域扩大到现代化交通运输、海洋开发、大地测量与勘探、石油钻井、矿井、隧道的掘进与贯通、机器人控制、现代化医疗器械、摄影技术以及森林防护、农业播种、施肥等民用领域。 惯性导航系统(Inertial Navigation System),简称惯导,是利用惯性敏感元件、基准方向及最初的位置信息来确定运载体的方位、姿态和速度的自主式航位推算系统。惯性导航系统可以分为平台式惯导系统和捷联式惯导系统两大类:平台式惯导系统是将陀螺仪和加速计安装在一个稳定平台上,以平台坐标系为基准,测量运载体运动参数的惯性导航系统;捷联式惯导系统(Strapdown Inertial Navigation System , SI )是将惯性敏感元件(陀螺仪和加速计)直接安装在运载体上,是一种不再需要稳定平台或常平架系统的惯性导航系统。 导航的目的就是为了得到运载体的实时的方位、姿态和速度。在工程运用中,能够测定物体运动参数的方法很多:如测量位移可以用里程计,还可以用无线电定位技术、天文定位技术和卫星定位技术等;要测速度可以用测速计;要测转角可用角位置传感器(电位计、光电码盘等等);要测角速度可以用转速表、测速电机等等。但是,以上各种测量手段还没有一种能够在同一时刻单独实时而又高精度地测量运载体的线运动和角运动,而惯性技术恰是测量这些运动参数的最理想的手段。

车载捷联惯导系统基本原理

车载捷联惯导系统基本原理 一、捷联惯导系统基本原理 捷联惯导系统基本原理如图2-1所示: 图中陀螺和加速度计直接与载体系b固联,用来测量载体的角运动信息和线运动信息。导航解算的本质是根据初值进行积分的过程,通过求解姿态微分方程完成对姿态和航向角的积分,通过求解比力微分方程完成对速度的积分,通过求解位置微分方程实现对位置的积分。捷联惯导的姿态矩阵C n 相当于“数学平台”,取代了平台惯导中的实体平台,而ω?相当于对数学平台“施矩”的指令角速率。

二、捷联惯导微分方程 (一)姿态微分方程 在捷联惯导系统中,导航坐标系n 和载体坐标系b 之间的角位置关系通常用姿态矩阵、四元数和欧拉角表示,相应也存在姿态矩阵微分方程、四元数微分方程和欧拉角微分方程三种形式。 姿态矩阵微分方程的表达式为:

在欧拉角微分方程式(2.2-7)中,当俯仰角θ趋于90o时,cosθ趋于0,tanθ趋于无穷,方程存在奇异性,所以这种方法不能在全姿态范围内正常工作;姿态矩阵微分方程式(2.2-1)可全姿态工作,但姿态矩阵更新相当于求解包含9个未知量的线性微分方程组,计算量大;四元数微分方程式(2.2-6)同样可以全姿态工作,且更新算法只需求解4个未知量的线性微分方程组,计算量小,算法简单,是较实用的工程算法。 (二)速度微分方程 速度微分方程即比力方程,是惯性导航解算的基本关系式: 三、捷联惯性导航算法 捷联惯导解算的目的是根据惯性器件输出求解载体姿

态、速度和位置等导航信息,实际上就是求解三个微分方程的过程,相应存在姿态更新算法、速度更新算法和位置更新算法。 (一)姿态更新算法 求解微分方程式(2.2-6)可得四元数姿态更新算法为:

陀螺罗经

陀螺罗经 B1、安许茨4型罗经,在纬度20°处起动时达稳定指北需3h,若起动状态一样,则在纬度60°处达稳定指北的时间。 A.仍为3h B.大于3h C.小于3h D.A、B、C皆可能 A2、在北纬静止基座上,下重式罗经主轴指北端的稳定位置是。 A.子午面内水平面之上 B.子午面内水平面之下 C.子午面之东水平面之上 D.子午面之西水平面之下 B3、把自由陀螺仪改造为陀螺罗经,关键是要。 A.克服地球自转B.克服地球自转角速度垂直分量所引起的主轴视运动 C.克服地球自转角速度水平分量所引起的主轴视运动 D.克服陀螺仪的定轴性 D4、一个自由陀螺仪要成为实用的陀螺罗经,必须对其施加。 A.进动力矩和稳定力矩 B.控制力矩和稳定力矩 C.进动力矩和阻尼力矩 D.控制力矩和阻尼力矩 A5、液体连通器式陀螺罗经在起动过程中,当主轴指北端向水平面靠拢时,阻尼力矩起到的作用。 A.增进其靠拢 B.阻止其靠拢 C.不起作用 D.以上都不对 B6、下列何种陀螺罗经采用西边加重物的垂直轴阻尼法。 A.安许茨4型罗经 B.斯伯利37型罗经 C.航海1型罗经 D.阿玛一勃朗10型罗经 A7、在北纬,船用陀螺罗经在稳定位置时,为什么其主轴要在水平面之上有一高度角,主要用于产生。 A.控制力矩 B.阻尼力矩 C.动量矩 D.以上均错 B8、当陀螺罗经结构参数一定时,罗经等幅摆动的周期为84.4min所对应的纬度被称为。 A.标准纬度 B.设计纬度 C.20° D.固定纬度C9、高速旋转的三自由度陀螺仪其进动性可描述为。 A.在外力的作用下,陀螺仪主轴的动量矩矢端将以捷径趋向外力方向 B.在外力矩的作用下,陀螺仪主轴的动量矩矢端力图保持其初始方位不变C.在外力矩的作用下,陀螺仪主轴的动量矩矢端将以捷径趋向外力矩 D.在外力矩的作用下,陀螺仪主轴即能自动找北指北 C10、舒拉条件是指当陀螺罗经的等幅摆动周期为,陀螺罗经不存在第一类冲击误差。 A.6h B.90min C.84.4min D.60min B11、陀螺罗经的阻尼因数表示主轴减幅摆动过程快慢程度,其大小在范围。 A.1~2 B.2.5~4 C.5~10 D.以上均错 D12、根据“海船航行设备规范”的要求,一般要在开航前4~6h起动陀螺罗经,这是因为。 A.罗经约经3个周期的阻尼摆动才能达到其正常工作温度 B.罗经约经3个周期的阻尼摆动才能达到其正常工作电流 C.罗经约经3个周期的阻尼摆动才能达到稳定

捷联惯导详细讲解

捷联惯导系统从20 世纪60 年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13 号登月飞船的应急备份装臵,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-downinertialnavigation) ,捷联( strap-down )的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。 一、捷联惯导系统工作原理及特点惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位臵信息等。 捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位臵参数。如采用指令+捷联式惯导 捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位臵信息来确定运载体的方位、位臵和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体

自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭” 空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。 除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。同时,从姿态矩阵的元素中提取姿态和航向信息.由此可见,在捷联惯导系统中平台的作用已由计算机及其软件的作用代替了,捷联式惯导系统采用的是数学平台。力学编排就是按照合适的数学模型由观测量计算出导航定位参数。具体地讲,利用陀螺仪测得的载体相对于惯性参照系的旋转角速度,计算出载体坐标系至导航计算坐标系之问的坐标转换矩阵;将测量的比力(加速度计测量载体相对于惯性空间的线加速度)变换至导航坐标系,并经过两次积分得到所需的速度位臵信息。 二、捷联惯导系统有以下独特优点: (1)去掉了复杂的平台机械系统,系统结构极为简单,减小了系统的体积和重量,同时降低了成本,简化了维修,提高了可靠性。 (2)无常用的机械平台,缩短了整个系统的启动准备时间,也消除了与平台系统有关的误差。 (3)无框架锁定系统,允许全方位(全姿态)工作。 (4)除能提供平台式系统所能提供的所有参数外,还可以提供

导航原理_捷联惯导系统

导航原理作业(惯性导航部分)

一枚导弹采用捷联惯性导航系统,三个速率陀螺仪Gx, Gy, Gz 和三个加速度计Ax, Ay, Az 的敏感轴分别沿着着 弹体坐标系的Xb, Yb, Zb轴。初始时刻该导弹处在北纬 45.75度,东经126.63度。 第一种情形:正对导弹进行地面静态测试(导弹质心相对地面静止)。 初始时刻弹体坐标系和地理坐标系重合,如图所示,弹体的Xb轴指东,Yb轴指北,Zb轴指天。此后弹体坐标系Xb-Yb-Zb 相对地理坐标系的转动如下: 首先,弹体绕Zb(方位轴)转过-10 度; 接着,弹体绕Xb(俯仰轴)转过15 度; 然后,弹体绕Yb(滚动轴)转过20 度; 最后弹体相对地面停止旋转。 请分别用方向余弦矩阵和四元数两种方法计算:弹体经过三次旋转并停止之后,弹体上三个加速度计Ax, Ay, Az的输出。取重力加速度的大小g = 9.8m/s2。 第二种情形:导弹正在飞行中。 初始时刻弹体坐标系仍和地理坐标系重合;且导弹初始高度200m,初始北向速度1800 m/s,初始东向速度和垂直速度都为零。 陀螺仪和加速度计的输出都为脉冲数形式,陀螺输出的每个脉冲代表0.00001弧度的角增量。加速度计输出的每个脉冲代表1μg,1g = 9.8m/s2。陀螺仪和加速度计输出的采样频率都为10Hz,在200秒内三个陀螺仪和三个加速度计的输出存在了数据文件gaout.mat中,内含一矩阵变量ga,有2000行,6列。每一行中的数据代表每个采样时刻三个陀螺Gx, Gy, Gz和三个加速度计Ax, Ay, Az 的输出的脉冲数。格式如下表(前10行)

将地球视为理想的球体,半径6371.00公里,且不考虑仪表误差,也不考虑弹体高度对重力加速度的影响。选取弹体的姿态计算周期为0.1秒,速度和位置的计算周期为1秒。 (1)请计算200秒后弹体到达的经纬度和高度,东向和北向速度; (2)请计算200秒后弹体相对当地地理坐标系的姿态四元数; (3)请绘制出200秒内导弹的经、纬度变化曲线(以经度为横轴,纬度为纵轴); (4)请绘制出200秒内导弹的高度变化曲线(以时间为横轴,高度为纵轴)。 二、程序设计说明及代码 1.第一种情形 (1)方向余弦矩阵法 1)程序代码 clear;clc; thetax=15*pi/180;thetay=20*pi/180;thetaz=(-10)*pi/180; A0=[0;0;-9.8]; Theta=[0,-thetaz,thetay;thetaz,0,-thetax;-thetay,thetax,0]; theta0=sqrt(thetax^2+thetay^2+thetaz^2); S=(sin(theta0))/theta0;C=(1-cos(theta0))/theta0^2; CT=eye(3)+S*Theta+C*(Theta^2); CTN=inv(CT); A1=CTN*A0 2)输出结果 (2)四元数法 1)程序代码

陀螺罗经

陀螺罗经 1.安许茨系列陀螺罗经开机前的检查与准备。(10分)(口述+实操) 2.读取安许茨系列陀螺罗经航向。(10分)(实操) 1.安许茨系列陀螺罗经开机步骤。(10分)(口述+实操) 2.读取安许茨系列陀螺罗经航向。(10分)(实操) 1.安许茨系列陀螺罗经关机步骤。(10分)(口述+实操) 2.读取安许茨系列陀螺罗经航向。(10分)(实操) 1.安许茨系列陀螺罗经主要开关控钮的作用。(10分)(口述)罗经电源主开关;随动开关 2.读取安许茨系列陀螺罗经航向。(10分)(实操) 1.斯伯利系列陀螺罗经开机前的检查与准备。(10分)(口述+实操) 2.读取斯伯利系列陀螺罗经航向。(10分)(实操) 1.斯伯利系列陀螺罗经开机步骤。(10分)(口述+实操) 2.读取斯伯利系列陀螺罗经航向。(10分)(实操) 1.斯伯利系列陀螺罗经关机步骤。(10分)(口述+实操) 2.读取斯伯利系列陀螺罗经航向。(10分)(实操) 1.斯伯利系列陀螺罗经主要开关控钮的作用。(10分)(口述)罗经电源主开关;方式转换开关;旋转控钮与开关;补偿器; 2.读取斯伯利系列陀螺罗经航向。(10分)(实操) 1.阿玛-勃朗系列陀螺罗经开机前的检查与准备。(10分)(口述+实操) 2.读取阿玛-勃朗系列陀螺罗经航向。(10分)(实操) 1.阿玛-勃朗系列陀螺罗经开机步骤。(10分)(口述+实操) 2.读取阿玛-勃朗系列陀螺罗经航向。(10分)(实操) 1.阿玛-勃朗系列陀螺罗经关机步骤。(10分)(口述+实操) 2.读取阿玛-勃朗系列陀螺罗经航向。(10分)(实操) 1.阿玛-勃朗系列陀螺罗经主要开关控钮的作用。(10分)(口述)罗经电源主开关;方位(AZIMUTH)按钮;倾斜(TILT)按钮;补偿器 2.读取阿玛-勃朗系列陀螺罗经航向。(10分)(实操)

陀螺罗经

20世纪70年代,伴随着光纤通信技术的发展,光纤传感技术也迅速发展起来。该技术是以光波为载体,光纤为媒质,感应和传输外界被测量信号的新型传感技术,以独特的优良性能赢得极大的重视,并在各个领域中广泛应用。光纤陀螺技术是光纤传感技术的一个特例,是利用光学传输特性而非转动部件来感应角速率和角偏差的惯性传感技术。 1 光纤陀螺的结构 按照元器件类型,光纤陀螺分为分立元件型、集成光学型和全光纤型。由于分立元件型光纤陀螺存在体积较大、可靠性较差、误差较大等缺点,现在世界各国都已停止发展。集成光学型光纤陀螺将主要光学元件如耦合器、偏振器、调制器都集成在一块芯片上,将光纤线圈、光源、检测器接在芯片适当的位置,就构成了实用的集成光学型光纤陀螺。从光纤陀螺的发展方向来看,集成光学型光纤陀螺是最有发展前途的光纤陀螺形式。全光纤陀螺是将主要的光学元件都加工在一条保偏光纤上,从而可以避免因元器件连接造成的误差。目前,全光纤陀螺技术比较成熟,其性能在三种中最好,适合在现阶段研制实用的商品光纤陀螺。 根据干涉型光纤陀螺的信号检测方式的不同,可以分为开环式和闭环式两大类。开环式光纤陀螺直接检测干涉条纹的相移,因而动态范围较窄,检测精度较低。闭环式系统采取相位补偿的方法,实时抵消萨格奈克相移,使陀螺始终工作在零相移状态,通过检测补偿相位移来测量角速度,其动态范围大,检测精度高。此外,闭环式光纤陀螺对环境尤其是对振动不敏感,是研制高精度光纤陀螺仪的理想形式。开环式全光纤陀螺是中低精度、低成本光纤陀螺中比较流行的结构。目前,在中高精度光纤陀螺仪领域,最为流行的设计结构为全数字闭环式光纤陀螺仪。 光纤陀螺示意图 2 光纤陀螺的特点 光纤陀螺的主要特点是:①无运动部件,仪器牢固稳定,耐冲击且对加速度不敏感;②结构简单,零部件少,价格低廉;③启动时间短(原理上可瞬间启动);④检测灵敏度和分辨率极高;⑤可直接用数字输出并与计算机接口联网;⑥动态范围极宽;⑦寿命长,信号稳定可靠; ⑧易于采用集成光路技术;⑨克服了因激光陀螺闭锁现象带来的负效应;⑩可与环形激光陀螺

捷联惯导系统快速罗经初始对准方法研究

捷联惯导系统快速罗经初始对准方法研究1 严恭敏1,严卫生1,2,徐德民1,2 1西北工业大学航海学院,西安(710072) 2水下信息处理与控制国家级重点实验室,西安(710072) E-mail:yangongmin@https://www.360docs.net/doc/1115229520.html, 摘要:在分析平台罗经初始对准原理基础上,提出了捷联罗经初始对准的原理并推导了适合于软件编程的算法。将捷联罗经对准的具体实现划分为四个阶段:方位角未知情况下的水平对准、粗略方位自对准、重新水平对准和罗经方位对准,通过对大方位误差角捷联惯导非线性误差方程的简化,推导了粗略方位自对准的算法公式。如果导航计算机存储容量足够大并且计算能力足够强,根据捷联惯导系统数学平台多样性和可进行逆向姿态控制的特点,设计了一种用于缩短捷联罗经初始对准时间的具体步骤。最后,试验表明快速捷联罗经对准方案是有效的。 关键词:捷联惯导系统,罗经效应,初始对准,逆向控制 中图分类号:V249.3 1. 引言 平台惯导系统罗经初始对准过程通常可分为两步,先是水平调平,然后是方位对准。方位对准在水平调平的基础上进行,一般采样罗经方位对准方法。方位罗经对准利用的是罗经效应,也就是,在正确的平台跟踪当地地理坐标系的角速率控制指令下,如果平台存在方位轴向的偏差角,平台将产生绕东向轴的倾斜,该倾斜能由北向加速度计感测到,利用北向加速度计的输出并设计适当的控制规律,控制平台方位轴朝减小方位偏差方向转动,实现平台自动寻北。捷联惯导系统初始对准通常可分为粗对准和精对准两个阶段:在粗对准阶段,利用地球自转角速度和重力加速度作为参考量,通过惯性器件的测量输出建立粗略的导航计算坐标系;在精对准阶段,通过现代控制理论最优估计方法估计出失准角,获得准确的姿态矩阵[1,2]。 捷联惯导系统经典解析式粗对准方法难以适应晃动干扰环境,有不少文献研究了晃动基座下的初始对准问题并且也出现一些应用实例,激光陀螺和光纤陀螺的发展和不断成熟为捷联罗经的研究注入了新的活力[3-6]。从本质上说,捷联惯导系统与平台惯导系统是相同的,前者以数学平台(利用姿态矩阵、四元数或欧拉角等数学工具)模拟后者的实体平台,描述捷联惯导系统相对于参考坐标系的空间方位。平台惯导系统中实体平台具有隔离外界干扰的作用,因而平台罗经能够实现晃动基座下的初始对准,同理,在捷联惯导系统初始对准中也可以根据平台罗经初始对准的特点,建立相应的数学平台隔离晃动影响。经典控制理论与现代最优估计方法相比,前者的优点之一是勿需精确的数学模型与噪声模型,应用经典控制理论进行罗经对准的设计方法已经非常成熟,为捷联罗经对准方案设计提供了大量的参考,然而初始对准时间长是平台罗经的一大缺点。快速初始对准是国内在捷联罗经对准方法研究中亟待解决的一个主要问题,该问题在某些西方国家已得到较好解决,例如法国iXSea公司的OctansIII型光纤陀螺罗经在动态环境下,能在3min内完成初始对准,达到0.2o×sec(L)的精度[5],成为捷联罗经研究与应用中的佼佼者,它为我们的研究和工程开发目标提供了参考。 本文从分析平台罗经初始对准的原理出发,提出了捷联罗经初始对准的原理并推导了便于软件编程的算法,通过对大方位误差角捷联惯导非线性误差方程的简化,推导了粗略方位 1本课题得到水下信息处理与控制国家级重点实验室基金(9140C230206070C2306)的资助。

相关文档
最新文档