圆中的计算问题课件示范
合集下载
与圆有关的几何定理课件

在物理学中,圆定理也被广泛 应用,如机械运动、光学、电 磁学等。
05
圆的拓展知识
圆与正多边形的联系
01
正多边形内切于圆
正多边形的各顶点均位于同一个圆上,且各边中点也位于该圆上。
02 03
正多边形外接于圆
正多边形的各边的垂直平分线均交于一点,该点称为正多边形的中心, 而以该点为圆心、半径等于正多边形边长的一半的圆称为正多边形的外 接圆。
切线长定理
总结词
切线长定理是关于圆的切线的性质和 关系的定理。
详细描述
切线长定理表明,如果一条直线与圆 相切于两点,则这两点处的切线长度 相等。此外,切线长定理还表明,两 个切点之间的连线段垂直于经过这两 点的切线。
圆周角定理
总结词
圆周角定理是关于圆周角和圆心角之间关系的定理。
详细描述
圆周角定理表明,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。这个定 理在证明圆的性质和解决与圆有关的问题时非常有用。
圆心到圆上任一点的距离相等
总结词
圆心到圆上任一点的距离都等于半径。
详细描述
在几何学中,圆心到圆上任一点的距离都等于半径,这是圆的基本性质之一。 这个性质说明了圆是一个等距曲线,即所有到圆心的距离相等的点都在圆上。
圆心到圆上任一点的连线段为圆的半径
总结词
圆心到圆上任一点的连线段是圆 的半径。
详细描述
在几何学中,通过圆心并与圆相 交的线段被称为圆的半径。这个 性质说明了半径是从圆心出发, 通过圆上任意一点的线段。
02
圆的定理
垂径定理
总结词
垂径定理是圆几何中的基本定理之一,它描述了通过圆心的直径将圆分成两个相 等的部分。
人教版九年级数学上册《圆的有关性质(第4课时)》示范教学课件

连接OA,OB.
根据圆周角定理,得∠C1=
1 2
∠AOB,
∠C2=
1 2
∠AOB,∠C3=
1∠AOB, 2
∴∠C1=∠C2=∠C3.
由此可得,同弧所对的圆周角相等.
C2
C1
C3
O
A
B
(2)等弧所对的圆周角
如图,在⊙O中,如果 AB =DE ,那么它们所对的圆周角∠C1 和∠C2的大小有什么关系?由此你能得到什么结论?
它们所对的弧一定相等.
O B
理由:在同圆或等圆中,如果两个圆周
角相等,那么它们所对的圆心角相等,因此 它们所对的弧也相等.
C
E
D
探究 仔细观察下面的动图,想一想直径所对的圆周角的度数确定吗?
如果确定,它是多少度?
探究 仔细观察下面的动图,想一想直径所对的圆周角的度数确定吗?
如果确定,它是多少度?
A
O
B
∴∠AOD=∠BOD, ∴AD=BD.
又在Rt△ABD中,AD2+BD2=AB2,
D
∴AD=BD= 2 AB=5 2
2 (cm) .
巧用圆周角定理及其推论解决两类问题 (1)解决与圆有关的角度的相关计算时,一般先判断角是 圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利 用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半 等关系求解. (2)在圆中有直径即可连接圆一点与直径的两个端点,构 造直径所对的圆周角,这是圆中添加辅助线的一种常用方法.
如图,∠C=90°,
C
根据圆周角定理:圆周角∠C的度数等
O
于它所对的圆心角∠AOB度数的一半,
A
B
∴∠AOB=180°.
28.3.3圆中的计算问题 课件 华师大版数学九年级下册

圆心角占整个周角的 所对扇形面积是
1800
180 360
180 2 r 360 90 2 r 360
45 2 r 360
900
90 360
45 360 n 360
450
n0
n 2 r 360
结论:
如果扇形面积为s,圆心角度数为n,圆半 径是r,那么 ,扇形面积计算公式为
Q
28.3圆中的计算问题
28.3.1弧长和扇形的面积
知识回顾
圆的周长公式 o
r
p
C=2πr
圆的面积公式
2 S=πr
问题情景:
如图28.3.1是圆弧形状的铁轨示意图,其中 铁轨的半径为100米,圆心角为90°.你能求出 这段铁轨的长度吗?
zxxk
解:∵圆心角900
1 图 28.3.1 ∴铁轨长度是圆周长的 4 1 则铁轨长是 2 100 50米
4
问题探究
上面求的是圆心角为900所对的弧长,若圆 心角为n0,如何计算它所对的弧长呢?
思考:
请同学们计算半径为 r,圆心角分别为1800、 900、450、n0所对的弧长.
图 28.3.2
圆心角占整个周角的
1800
所对弧长是
180 360 90 360 45 360 n 360
180 2r 360 90 2r 360 45 2r 360
c 2r l
l s n r 2 或s 1 lr 扇 形 面 积 S 360 2 n° r O
扇形周长计算公式为
z、xxk
c 2r l
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
圆的面积ppt教学课件共31张ppt

重点与难点解析
针对推导过程中的重点和难点进行深 入剖析,帮助学生更好地理解和掌握 。
公式记忆技巧分享
公式记忆方法
介绍一些有效的记忆方法 ,如联想记忆、口诀记忆 等,帮助学生快速记住圆 的面积公式。
公式应用技巧
分享在实际应用中如何灵 活运用圆的面积公式,提 高解题效率和准确性。
公式记忆的意义
强调记住公式并非目的, 而是为了更好地应用公式 解决实际问题。
思考题二
若将一个圆分成n个相等的小扇形 ,然后将这些小扇形重新组合成 一个近似于矩形的图形,试推导 圆的面积公式。
THANKS
感谢观看
使用测量工具测量每个内
02
切圆的半径,并通过公式
计算面积。
分析比较不同形状内切圆
04
面积的关系,并尝试总结
规律。
创意拼图活动:用圆形创造美丽图案
准备多个大小、颜色不同 的圆形纸片。
让学生们自由发挥想象力 ,使用这些圆形纸片拼出 各种美丽的图案。
可以拼出动物、植物、建 筑物等各种形状,也可以 创作出抽象的艺术作品。
特点
圆是到定点的距离等于定长的所有点组成的图形,具有 对称性和均匀性。
圆心、半径、直径关系
01 圆心
圆的中心,通常用字母O表示。
02 半径
从圆心到圆上任一点的线段,通常用字母r表示。
03 直径
通过圆心且两端点在圆上的线段,是圆中最长的 弦,通常用字母d表示,且d=2r。
圆周角与圆心角关系
01 圆周角
03
典型例题分析与解答
已知半径求面积问题
例题1
已知圆的半径为3厘米,求圆的面积。
注意事项
计算过程中要注意pi r^2$,将 半径代入公式进行计算。
第五章圆第6节解决问题课件(15张PPT)

(3)圆的半径越大,圆的面积就越大。
(√ )
巩固扩大
2.(教材P70页做一做)右图是一面我国唐代外圆内 方的铜镜。铜镜的直径是24cm。外面的圆与内部 的正方形之间的面积是多少?
3.14×(24÷2)2= 452.16(cm)2 (24÷2)2÷2×4=288(cm)2 452.16-288=164.16(cm)2
互动新授
3
中国建筑中经常能见到“外方内圆”和 “外圆内方”的设计。上图中的两个圆半径都 是1m,你能求出正方形和圆之间部分的面积吗?
互动新授
理解题意
图序 已知条件 图(1) 外方内圆
圆半径1m
图(2) 外圆内方 圆半径1m
问题 方圆之间的面积
方圆之间的面积
互动新授
解法探究
右图中正方形的边长就是圆的直径。 (1)列式计算 从图(1)可以看出:2×2=4(m2)
复习导入
1.根据已知条件求圆的面积。 (1)r =2dm (2) d =6cm (3)C=6.28m
3.14×22 =12.56(dm2) 3.14×(6÷2)2 =28.26(cm2) 3.14×(6.28÷3.14÷2)2 = 3.14(m2)
复习导入
2.求圆环的面积。(单位:cm) 6÷2=3(cm) 4÷2=2(cm) 3.14×(32-22)=15.7(cm2)
3.14×12=3.14(m2)4-3.14=0.86(m2)
互动新授
可是右图中正方形 的边长是多少呢?
从图(2)可以看出: (1 ×2×1)×2=2(m2)
2 3.14-2=1.14(m2)
可以把右图中的正方形 看成两个三角形,它的 底和高分别是……
互动新授
如果两个圆的半径都是 r,结果又是怎样的?
圆的标准方程完整ppt课件(2024)

r^{2}$。
2024/1/30
9
方程中参数的意义
2024/1/30
$a, b$
01
圆心坐标,表示圆心的位置。
$r$
02
半径,表示圆的大小。
$x, y$
03
圆上任意一点的坐标,满足方程 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
10
03
圆的图形特征与性质
2024/1/30
圆关于经过圆心的任意直 线都是对称的。
2024/1/30
周期性
圆上任意一点绕圆心旋转 360度后回到原位,具有 周期性。
应用
利用对称性和周期性可以 简化一些复杂的几何问题 。
13
切线与法线的性质
切线
与圆有且仅有一个公共 点的直线。
2024/1/30
法线
过切点且与切线垂直的 直线。
切线与半径垂直
切线长定理
已知圆与直线相切求参数
利用圆心到直线的距离等于半径,可以列出方程求解参数 。
24
判断点与圆的位置关系
计算点到圆心的距离与半径比较
若距离小于半径,则点在圆内;若距离等于半径,则点在圆上;若距离大于半 径,则点在圆外。
利用点与圆方程的关系判断
将点的坐标代入圆方程,若得到的值小于0,则点在圆内;若得到的值等于0, 则点在圆上;若得到的值大于0,则点在圆外。
圆与双曲线的关系
双曲线的一种特殊情况是等轴双曲线,其渐近线方程就是圆的方程。此外,双曲线的焦点 到任意一点的距离之差为定值,这个定值也可以和圆的半径建立联系。
圆与抛物线的关系
抛物线的一种特殊情况是顶点在原点,对称轴为y轴的抛物线,其准线方程就是圆的方程 。同时,抛物线的焦点到任意一点的距离等于该点到准线的距离,这个性质也可以和圆的 性质进行类比。
2024/1/30
9
方程中参数的意义
2024/1/30
$a, b$
01
圆心坐标,表示圆心的位置。
$r$
02
半径,表示圆的大小。
$x, y$
03
圆上任意一点的坐标,满足方程 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
10
03
圆的图形特征与性质
2024/1/30
圆关于经过圆心的任意直 线都是对称的。
2024/1/30
周期性
圆上任意一点绕圆心旋转 360度后回到原位,具有 周期性。
应用
利用对称性和周期性可以 简化一些复杂的几何问题 。
13
切线与法线的性质
切线
与圆有且仅有一个公共 点的直线。
2024/1/30
法线
过切点且与切线垂直的 直线。
切线与半径垂直
切线长定理
已知圆与直线相切求参数
利用圆心到直线的距离等于半径,可以列出方程求解参数 。
24
判断点与圆的位置关系
计算点到圆心的距离与半径比较
若距离小于半径,则点在圆内;若距离等于半径,则点在圆上;若距离大于半 径,则点在圆外。
利用点与圆方程的关系判断
将点的坐标代入圆方程,若得到的值小于0,则点在圆内;若得到的值等于0, 则点在圆上;若得到的值大于0,则点在圆外。
圆与双曲线的关系
双曲线的一种特殊情况是等轴双曲线,其渐近线方程就是圆的方程。此外,双曲线的焦点 到任意一点的距离之差为定值,这个定值也可以和圆的半径建立联系。
圆与抛物线的关系
抛物线的一种特殊情况是顶点在原点,对称轴为y轴的抛物线,其准线方程就是圆的方程 。同时,抛物线的焦点到任意一点的距离等于该点到准线的距离,这个性质也可以和圆的 性质进行类比。
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
《圆的面积复习》课件

圆的面积公式的应用
展示圆的面积公式在实际问题中的应用案例。
题目二:圆的面积计算
1
圆的半径和直径的概念
介绍圆的半径和直径的定义及其与圆的面积计算的关系。
2
计算圆的半径和直径
讲解如何根据给定信息计算圆的半径和直径的方法和公式。
3
圆的面积的计算方法
详细说明根据圆的半径或直径计算圆的面积的步骤和公式。
题目三:圆的面积的应用
圆的面积在生活中的应用
展示圆的面积在建筑、设计等领 域的实际应用案例。
圆的面积在几何中的应用
介绍圆的面积与其他几何形状的 关系,如圆、矩形、三角形等。
圆的面积与其他数学领域 的应用
介绍圆的面积与其他数学概念如 方程、函数等的关系。
题目四:圆的面积的推广
圆的面积推广到三维空间 中
探讨圆的面积概念在三维空间 中的应用,并介绍相关公式。
《圆的面积复习》PPT课 圆的面积公式、计算方法、 应用以及面积的推广。通过本课件,你将深入了解圆的面积的原理与应用。
题目一:圆的面积公式
认识圆的面积公式
介绍圆的面积公式的含义、作用和重要性。
推导圆的面积公式
详细解释如何推导圆的面积公式,并展示推导过程。
圆的面积推广到复数的应 用中
展示圆的面积概念在复数和复 平面中的应用。
圆的面积推广到更高维度 的几何空间中
介绍圆的面积概念如何推广到 更高维度的几何空间中。
结论
通过学习这份PPT课件,你将会了解:
1 圆的面积公式及其推导过程
通过详细解释圆的面积公式的推导过程,加 深对其原理的理解。
2 圆的面积的计算方法和应用
学习如何计算圆的面积以及在实际问题中的 应用。
3 圆的面积与其他几何形状的关系
展示圆的面积公式在实际问题中的应用案例。
题目二:圆的面积计算
1
圆的半径和直径的概念
介绍圆的半径和直径的定义及其与圆的面积计算的关系。
2
计算圆的半径和直径
讲解如何根据给定信息计算圆的半径和直径的方法和公式。
3
圆的面积的计算方法
详细说明根据圆的半径或直径计算圆的面积的步骤和公式。
题目三:圆的面积的应用
圆的面积在生活中的应用
展示圆的面积在建筑、设计等领 域的实际应用案例。
圆的面积在几何中的应用
介绍圆的面积与其他几何形状的 关系,如圆、矩形、三角形等。
圆的面积与其他数学领域 的应用
介绍圆的面积与其他数学概念如 方程、函数等的关系。
题目四:圆的面积的推广
圆的面积推广到三维空间 中
探讨圆的面积概念在三维空间 中的应用,并介绍相关公式。
《圆的面积复习》PPT课 圆的面积公式、计算方法、 应用以及面积的推广。通过本课件,你将深入了解圆的面积的原理与应用。
题目一:圆的面积公式
认识圆的面积公式
介绍圆的面积公式的含义、作用和重要性。
推导圆的面积公式
详细解释如何推导圆的面积公式,并展示推导过程。
圆的面积推广到复数的应 用中
展示圆的面积概念在复数和复 平面中的应用。
圆的面积推广到更高维度 的几何空间中
介绍圆的面积概念如何推广到 更高维度的几何空间中。
结论
通过学习这份PPT课件,你将会了解:
1 圆的面积公式及其推导过程
通过详细解释圆的面积公式的推导过程,加 深对其原理的理解。
2 圆的面积的计算方法和应用
学习如何计算圆的面积以及在实际问题中的 应用。
3 圆的面积与其他几何形状的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比r :a= _1_:_2 .
S
ɑ
hl
A Or B
抽查清
1、填空、根据下列条件求值(其中r、h、 a分别是圆锥的底面半径、高线、母线长)
(1)a = 2,r=1 则 h=____3___
(2) h =3, r=4 则 a=__5_____
(3) a = 10, h = 8
则r=___6____
图 23.3.6
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
3.把握好故事情节,是欣赏小说的基础, 也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点, 从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
抽查清
2、根据圆锥的下面条件,求它 的侧面积和全面积 ( 1 ) r=12cm, a=20cm ( 2 ) h=12cm, r=5cm
图 23.3.6
(1)侧:240π 全:384π (2)侧:65π 全:90π
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
,
这个 的弧长等于
这个圆锥的母线长等于
2、圆锥的侧面积就是
,
而圆锥的全面积就是
。
l ha
r
当 堂
例1、一个圆锥形零件的母线长为a,
底面的半径为r,求这个圆锥形零件的
练 侧面积和全面积.
习 解 :圆锥的侧面展开后是一个扇形,该扇
形的半径为a,扇形的弧长为2πr,所以
S侧=
1 2
×2πr×a=πra
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
感谢观看,欢迎指导!
13
当堂检测
1、如果圆锥的底面周长是20 π,侧面展 开后所得的扇形的圆心角为120度,则该圆 锥的侧面积为3__0_0_π_,全面积为_4_0__0_π__
2、圆锥的母线与高的夹角为30°,母线 长为6cm ,它的全面积为2_7_π ,
3、如图,若圆锥的侧面展 开图是半圆,那么这个展开 图的圆心角是_1_8_0度; 圆锥底面半径 r与母线a的
圆锥的侧面积与全面积
学习目标
通过实验使学生知道圆锥的 侧面积展开图是扇形。
知道圆锥各部分的名称。 能够计算圆锥的侧面积和全
面积。
自学指导一
1、圆锥的母线: 圆锥的母线有几条: 圆锥的高:
2、圆锥的侧面展开图是 圆锥的全面展开图是 和
3、圆锥的底面半径r 、高线h、母线 长a三者之间有什么关系?
s全 s侧 s底 ra r 2
rl
P
a h
A
O r
B
ha
r
当堂练习
例2、已知:在RtΔABC,C 900.AB 13cm, BC 5cm
求 以AB为轴旋转一周所得到的几何体的全面
积。
A
分析:
D
C
B
以AB为轴旋转一周所得到的几何体是由公共 底面的两个圆锥所组成的几何体,因此求全面 积就是求两个圆锥的侧面积。
S底=πr2;
S =πra +πr2.
答:这个圆锥形零件的侧面积
为πra,全面积为πra+πr2
图 23.3.6
圆锥的侧面积和全面积
圆锥的侧面积 S 侧 = πra
圆锥的全面积
r 360 2 360 288
l
2.5
s圆锥侧
s扇形
· l 2
360
r · 360·1 l 2
l
360
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
圆锥的相关概念
高 连结顶点与底面圆心的线段
叫做圆锥的高
h a 母线 r 我们把圆锥底面圆周上的任意一点
与圆锥顶点的连线叫做圆锥的母线
圆锥的底面半径、高线、母线长 三者之间有什么关系?
a、h、r 构成一个直角三角形
A
a2 h2 r2
P
ha
Or B
自学指导二
沿着圆锥的母线,把一个圆锥的侧
面展开,得到一个
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
解:过C点作 CD A,B垂足为D点
C 900.AB 13cm, BC 5cm
A
所以 AC 12cm
CD AC BC 512 60 AB 13 13
D
C
底面周长为 2 60 120
B
13 13
所以S全面积
1 120
2 13
12
1 120
2 13
5
1020 (cm)2
13
答:这个几何体的全面积为 1020 (cm)2
S
ɑ
hl
A Or B
抽查清
1、填空、根据下列条件求值(其中r、h、 a分别是圆锥的底面半径、高线、母线长)
(1)a = 2,r=1 则 h=____3___
(2) h =3, r=4 则 a=__5_____
(3) a = 10, h = 8
则r=___6____
图 23.3.6
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
3.把握好故事情节,是欣赏小说的基础, 也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点, 从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
抽查清
2、根据圆锥的下面条件,求它 的侧面积和全面积 ( 1 ) r=12cm, a=20cm ( 2 ) h=12cm, r=5cm
图 23.3.6
(1)侧:240π 全:384π (2)侧:65π 全:90π
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
,
这个 的弧长等于
这个圆锥的母线长等于
2、圆锥的侧面积就是
,
而圆锥的全面积就是
。
l ha
r
当 堂
例1、一个圆锥形零件的母线长为a,
底面的半径为r,求这个圆锥形零件的
练 侧面积和全面积.
习 解 :圆锥的侧面展开后是一个扇形,该扇
形的半径为a,扇形的弧长为2πr,所以
S侧=
1 2
×2πr×a=πra
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
感谢观看,欢迎指导!
13
当堂检测
1、如果圆锥的底面周长是20 π,侧面展 开后所得的扇形的圆心角为120度,则该圆 锥的侧面积为3__0_0_π_,全面积为_4_0__0_π__
2、圆锥的母线与高的夹角为30°,母线 长为6cm ,它的全面积为2_7_π ,
3、如图,若圆锥的侧面展 开图是半圆,那么这个展开 图的圆心角是_1_8_0度; 圆锥底面半径 r与母线a的
圆锥的侧面积与全面积
学习目标
通过实验使学生知道圆锥的 侧面积展开图是扇形。
知道圆锥各部分的名称。 能够计算圆锥的侧面积和全
面积。
自学指导一
1、圆锥的母线: 圆锥的母线有几条: 圆锥的高:
2、圆锥的侧面展开图是 圆锥的全面展开图是 和
3、圆锥的底面半径r 、高线h、母线 长a三者之间有什么关系?
s全 s侧 s底 ra r 2
rl
P
a h
A
O r
B
ha
r
当堂练习
例2、已知:在RtΔABC,C 900.AB 13cm, BC 5cm
求 以AB为轴旋转一周所得到的几何体的全面
积。
A
分析:
D
C
B
以AB为轴旋转一周所得到的几何体是由公共 底面的两个圆锥所组成的几何体,因此求全面 积就是求两个圆锥的侧面积。
S底=πr2;
S =πra +πr2.
答:这个圆锥形零件的侧面积
为πra,全面积为πra+πr2
图 23.3.6
圆锥的侧面积和全面积
圆锥的侧面积 S 侧 = πra
圆锥的全面积
r 360 2 360 288
l
2.5
s圆锥侧
s扇形
· l 2
360
r · 360·1 l 2
l
360
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
圆锥的相关概念
高 连结顶点与底面圆心的线段
叫做圆锥的高
h a 母线 r 我们把圆锥底面圆周上的任意一点
与圆锥顶点的连线叫做圆锥的母线
圆锥的底面半径、高线、母线长 三者之间有什么关系?
a、h、r 构成一个直角三角形
A
a2 h2 r2
P
ha
Or B
自学指导二
沿着圆锥的母线,把一个圆锥的侧
面展开,得到一个
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
解:过C点作 CD A,B垂足为D点
C 900.AB 13cm, BC 5cm
A
所以 AC 12cm
CD AC BC 512 60 AB 13 13
D
C
底面周长为 2 60 120
B
13 13
所以S全面积
1 120
2 13
12
1 120
2 13
5
1020 (cm)2
13
答:这个几何体的全面积为 1020 (cm)2