金融数学 第四章 资本资产定价模型CAPM

合集下载

概述资本资产定价模型(CAPM)

概述资本资产定价模型(CAPM)

概述资本资产定价模型(CAPM)一、引言(资本资产定价模型的理论源渊)资产定价理论源于马柯维茨(Harry Markowtitz)的资产组合理论的研究。

1952年,马柯维茨在《金融杂志》上发表题为《投资组合的选择》的博士论文是现代金融学的第一个突破,他在该文中确定了最小方差资产组合集合的思想和方法,开创了对投资进行整体管理的先河,奠定了投资理论发展的基石,这一理论提出标志着现代投资分析理论的诞生。

在此后的岁月里,经济学家们一直在利用数量化方法不断丰富和完善组合管理的理论和实际投资管理方法,并使之成为投资学的主流理论。

到了60年代初期,金融经济学家们开始研究马柯维茨的模型是如何影响证券估值,这一研究导致了资本资产定价模型(Capital Asset Price Model,简称为CAPM)的产生。

现代资本资产定价模型是由夏普(William Sharpe ,1964年)、林特纳(Jone Lintner,1965年)和莫辛(Mossin,1966年)根据马柯维茨最优资产组合选择的思想分别提出来的,因此资本资产定价模型也称为SLM模型。

由于资本资产定价模型在资产组合管理中具有重要的作用,从其创立的六十年代中期起,就迅速为实业界所接受并转化为实用,也成了学术界研究的焦点和热点问题。

二、资本资产定价模型理论描述资本资产定价模型是在马柯维茨均值方差理论基础上发展起来的,它继承了其的假设,如,资本市场是有效的、资产无限可分,投资者可以购买股票的任何部分、投资者根据均值方差选择投资组合、投资者是厌恶风险,永不满足的、存在着无风险资产,投资者可以按无风险利率自由借贷等等。

同时又由于马柯维茨的投资组合理论计算的繁琐性,导致了其的不实用性,夏普在继承的同时,为了简化模型,又增加了新的假设。

有,资本市场是完美的,没有交易成本,信息是免费的并且是立即可得的、所有投资者借贷利率相等、投资期是单期的或者说投资者都有相同的投资期限、投资者有相同的预期,即他们对预期回报率,标准差和证券之间的协方差具有相同的理解等等。

资本资产定价模型 (CAPM)

资本资产定价模型 (CAPM)
© 北京大学光华管理学院金融系 徐信忠 2002
因素的确定
• APT没有明确指明这些因素是什么 • Chen, Roll and Ross(1986, JOB):
- 未预料到的工业产量的变动 - 未预料到的Baa级债券收益率和AAA级债券收 益率之间的价差变动 - 未预料到的长期利率和短期利率之间的价差
总计 +16,000
0
0
© 北京大学光华管理学院金融系 徐信忠 2002
APT的假设
• 证券的期望收益率是由多种因素线性决定 • 投资者对收益的产生过程有相同的信念 • 完全竞争和没有摩擦的资本市场
© 北京大学光华管理学院金融系 徐信忠 2002
APT(套利定价模型) (1)
• APT假设:
ri E(ri ) bi1F~1 biKF~K i
• a的变动对均值和标准差的影响为:
© 北京大学光华管理学院金融系 徐信忠 2002
CAPM的导出 (3)
rp a
ri
rM ( 3)
p
a
22[aa2i2i22(1M 2a)22aM 2M 22a2(1iMa)4aiM ]i1M /2
(4 )
•利用方程(3)、(4),当a=0时,我们可以得到
© 北京大学光华管理学院金融系 徐信忠 2002
ri
0.10 0.05
M

•B
• A SML



0.7 1.0
1.3
i
© 北京大学光华管理学院金融系 徐信忠 2002
在投资组合选择中运用CAPM
• CAPM提供了消极投资策略的依据 - 按市场投资组合的比例分散持有多种风险资产 - 该组合与无风险资产再组合,以获得所希望的风险 (标准差)-收益组合

详解资本资产定价模型(CAPM)

详解资本资产定价模型(CAPM)
命题成立,证毕。
rp
可行集
( 1 , r1 )
为风险资产组合
r1 rf
rf
1
可行集的斜率为
r1 rf
p
1
不可行
在过无风险利率点的很多可行集 (直线)中,与原本的风险资产 组合的可行集相切的那条直线是加 入无风险资产后的新的组合的有效集。

收益rp
M ● Rf-M为有效集
rf
非有效
风险σp
8.1.2 CAPM的基本假设


CAPM模型是建立在一系列假设基础之上的。 设定假设的原因在于:由于实际的经济环境过于复杂, 以至我们无法描述所有影响该环境的因素,而只能集 中于最重要的因素,而这又只能通过对经济环境作出 的一系列假设来达到。 放宽假设
8.1.2 CAPM的基本假设
命题1:一种无风险资产与风险组合构成的新组 合的可行集为一条直线。 证明:假定风险组合(基金)已经构成, 其期望收益为 r1 ,标准差为 1 。 无风险资产的收益为 rf ,标准差为 0 。 1 w1为无风险 w1 为风险组合的投资比例, 证券的的投资比例,则组合的期望收益 rp 为
rp w1 r1 (1 w1 )rf
(1)
组合的标准差为 p w1 1 (2) 由()和( 1 2)可得
一种风险资产与无风险资产构 成的组合,其标准差是风险资 产的权重与标准差的乘积。
p p (r1 rf ) rp r1 (1 )rf =rf p 1 1 1 r1 可以发现这是一条以rf 为截距,以 为斜率的直线。 1

切点证券组合图示
收益rp
无差异曲线
8.1.3 分离定理

例子:考虑 A、B、C 三种证券,市场的无风险利率为 4% ,我们证明了切点证券组合 T 由 A、B、C 三种证券 按0.12,0.19,0.69的比例组成。如果假设1-10成立, 有两个投资者,他们的初始资金都是100万元,则,第 一个投资者把一半的资金50万,投资在无风险资产上, 把另一半 50 万投资在 T 上,而第二个投资者以无风险 利率借到相当于他一半初始财富的资金 50万,再把所 有的资金150万投资在T上。这两个投资者投资在A、B、 C三种证券上的比例分别为:

第四章资本资产定价(CAPM)

第四章资本资产定价(CAPM)
i 则第 项资产对市场组合的风险的影响越大,在市场均
衡时,该项资产应该得到的风险补偿也就越大。
2019/11/22
SML与CML对比: 都是组合p的收益与风险之间关系的函数 SML对任意的证券组合成立 CML仅对边界证券组合成立 “横坐标”不同:标准差,β 系数
2019/11/22
五、SML的几何含义
有风险资产的市场组合就是指从市场组合中拿掉无 风险证券后的组合。
定理5.2 在均衡时,每一种证券在切点证券组合M 的构成中都占有非零的比例。
2019/11/22
当所有的价格调整过程都停止时,证券市场达到均衡。 这时,市场具有如下性质:
(1)每个投资者都持有正的一定数量的每种风险证券;
(2)证券的价格使得对每种证券的需求量正好等于市场 上存在的证券的数量;
pj
N
D j
(r
,
rf
)
Wm0
j 1
I
I
p j NiDj (r, rf )
ijW0i
i1
i1
Wm0
Wm0
(4.6)
2019/11/22
即当市场达到均衡时,有风险的市场组合的权为所有 投资者的风险证券构成的证券组合的权的凸组合,换 言之,有风险的市场组合是由所有投资者的风险证券 构成的证券组合形成的证券组合:
这就是经典的资产定价模型(CAPM)!
2019/11/22
这种证券的 值与期望回报率之间的均衡关系
称为证券市场线(Security Market Line,简记为
SML)。
E(r)
E(rM )
rf
SML
称证券市场线的斜率 E(rM ) rf
为风险价格,而称 为证券的 风险。由 的定义,我们可知,

资本资产定价模型(Capital Asset Pricing Model,CAPM)

资本资产定价模型(Capital Asset Pricing Model,CAPM)

资本资产定价模型出自 MBA智库百科(/)(重定向自资本资产定价理论)资本资产定价模型(Capital Asset Pricing Model,CAPM)目录[隐藏]∙ 1 CAPM模型的提出∙ 2 资本资产定价模型公式∙ 3 资本资产定价模型的假设∙ 4 资本资产定价模型的优缺点∙ 5 Beta系数∙ 6 资本资产定价模型之性质∙7 CAPM 的意义∙8 资本资产订价模式模型之应用——证券定价∙9 资本资产定价模型之限制∙10 相关条目[编辑]CAPM模型的提出CAPM是诺贝尔经济学奖获得者威廉·夏普(William Sharpe) 于1970年在他的著作《投资组合理论与资本市场》中提出的。

他指出在这个模型中,个人投资者面临着两种风险:系统性风险(Systematic Risk):指市场中无法通过分散投资来消除的风险。

比如说:利率、经济衰退、战争,这些都属于不可通过分散投资来消除的风险。

非系统性风险(Unsystematic Risk):也被称做为特殊风险(Unique risk 或 Idiosyncratic risk),这是属于个别股票的自有风险,投资者可以通过变更股票投资组合来消除的。

从技术的角度来说,非系统性风险的回报是股票收益的组成部分,但它所带来的风险是不随市场的变化而变化的。

现代投资组合理论(Modern portfolio theory)指出特殊风险是可以通过分散投资(Diversification)来消除的。

即使投资组合中包含了所有市场的股票,系统风险亦不会因分散投资而消除,在计算投资回报率的时候,系统风险是投资者最难以计算的。

资本资产定价模型的目的是在协助投资人决定资本资产的价格,即在市场均衡时,证券要求报酬率与证券的市场风险(系统性风险)间的线性关系。

市场风险系数是用β值来衡量.资本资产(资本资产)指股票,债券等有价证券。

CAPM所考虑的是不可分散的风险(市场风险)对证券要求报酬率之影响,其已假定投资人可作完全多角化的投资来分散可分散的风险(公司特有风险),故此时只有无法分散的风险,才是投资人所关心的风险,因此也只有这些风险,可以获得风险贴水。

资本资产定价模型(CAPM模型)

资本资产定价模型(CAPM模型)
若 j>1 ,则表示股票j的风险高于市场风险,因此承担风险 资产j的风险溢价应高于市场风险溢价;如j<1,则承担风险 资产j的风险溢价应低于市场风险溢价。
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险 为 j m ,即 j乘上市场风险 m是j所带来的风险,而每 单位风险的价格为:
rm
在上图里,股票A的趋势与整个股市的趋势完全保持 一致,因而股票A的风险只有市场风险;而股票H则 是高风险的,因其回报期率变化幅度大于股市(大 盘)的变动幅度;相反,L则是低风险的股票。
β 值及其经济含义
投资组合的值
C wA A wB B
投资组合C由一种无风险资产与两种风险资产构成
证券市场线(Security Market Line,SML)
证券市场线方程:
E(ri ) rf (E(rm ) rf )i
2 i Cov(ri , rm ) / Var(rm ) im / m 证券 与市场组合 的协方差风险 与该证券的预期 收益率 关系的表达式。
i f
i 2 :股票 i与整个股市超额回报的上下涨落完全保持一致; 0.5:股票 i 的波动幅度是整个股市波动幅度的2倍;
:股票 的波动幅度是整个股市(大盘)波动幅度的一半。
1
就可以看成单只股票 i 的超额回报率。
β 值及其经济含义
ri
H 2
A 1
L 0.5
资本资产定价模型
Capital Asset Pricing Model
第一节 CAPM模型介绍 第二节 CAPM模型推导 第三节 CAPM模型检验与应用
第一节 CAPM模型介绍
1.1 CAPM的背景与发展 1.2 CAPM的假设条件与结论 1.3 资本市场线(Capital Market Line,CML) 1.4 证券市场线(Security Market Line,SML) 1.5 证券特征线(Characteristic Line)

资本资产定价模型CAPM模型课件

• 非均衡状态下特征线方程:
E (r i) rf ii(E (r m ) rf)
• i为非市场相关收益。可以用来衡量一个组合投资 的管理者业绩。 i 0说明管理者业绩好,反之则说
明管理者水平较低于未来的不确定性,引起未来实 际收益的不确定性。
资本资产定价模型CAPM模型
证券特征线(Characteristic Line)
• 投资组合C由一种无风险资产与两种风险资产构成
r C (1 w A w B )rf w A rA w B rB
rC rf w A (rA rf) w B (rB rf)
E(rCrf)w A[E(rA)rf]w B[E(rB)rf]
(w AAw BB)[E(rM )rf]
资本资产定价模型CAPM模型
E ( ri )
E ( rm )
rf 0
资1本资产定价模型CAPM模型
i
证券市场线(Security Market Line,SML)
• 资本资产定价模型,又称证券市场线,由此模型 可知单个资产的总风险可以分为两部分,一部分
是因为市场组合 收益m 变动而使资产 收益i发生
的 剩变 余动 风,险即被称为值非,系这 统是i 风系险统。风单险个;资另产一的部价分格,只即 与该资产的系统风险大小有关,而与其非系统风 险的大小无关。
E ( r P ) r f 1 .5 [ E ( r M ) r f] 1 .5 8 % 1 2 %
资本资产定价模型CAPM模型
证券特征线(Characteristic Line)
• 证券特征线方程: E (ri)rf i(E (rm )rf)
E(ri ) rf
A
O
E(rm ) rf
mii?证券市场线securitymarketlinesml资本资产定价模型capm模型?描述对象不同?cml描述有效组合的收益与风险之间的关系?sml描述的是单个证券或某个证券组合的收益与风险之间的关系既包括有效组合有包括非有效组合?风险指标不同?cml中采用标准差作为风险度量指标是有效组合收益率的标准差?sml中采用系数作为风险度量指标是单个证券或某个证券组合的系数?因此对于有效组合来说可以用两种指标来度量其风险而对于非有效组合来说只能用系数来度量其风险标准差是一种错误度量资本市场线与证券市场线的内在关系资本资产定价模型capm模型资本市场线与证券市场线的内在关系?资本市场线表示的是无风险资产与有效率风险资产再组合后的有效资产组合期望收益与总风险之间的关系因此在资本市场线上的点就是有效组合

第四章资本资产定价(CAPM)

第四章 资本资产定价模型CAPM
2020/7/4
均值方差模型提出了证券的选择问题,解决了最 优地持有有效证券组合,即在同等收益水平之下风险 最小的证券组合
夏普等人在该模型基础上发展了它的经济含义 任何证券或证券组合收益率与某个共同因素的关 系即资产定价模型(CAPM)
2020/7/4
4.1 CAPM理论的基本假设
格为pf),设 ij (r, rf ) 表示个体i投资在第j种风险证券上
的初始财富的份额,NiDj (r, rf ) 表示个体i对第j种风险证券
的需求份数,则对个体i而言, ij (r, rf )
p j NiDj (r, rf ) W0i

而对市场而言,第j种风险证券的市场总需求份数为
I
20N20Dj/7(/4r, rf ) i1 NiDj (r, rf ) ,它们均为r和rf的函数。
Line,简称CML)
2020/7/4

M
资本市场线 p
定理4.1 分离定理
我们不需要知道投资者对风险和回报的偏好, 就能够确定其风险资产的最优组合。 或
在没有确定某个投资者的无差异曲线之前,我 们就可以知道他的风险资产的最优组合。
2020/7/4
如果M点所代表有风险资产组合的预期收益率和标准
C组合的预期回报应为:2x21%-1x8%=34% 标准差应为:2x18%=36% 由此我们构造了一个风险和预期收益都成线性增长 的新组合C。
2020/7/4
资本市场线方程
rp rM
rf
M

rp
rf
rM rf
M
p
M
p
资本市场线
202组合的期望回 报率和风险之间的关系。当风险增加时,对应的期望 回报率也增加。其余的证券组合都落在这条直线之下。

金融数学课件第四章资本资产定价模型CAPM


E (r ) O’ EO’ Q m O A
Em EQ’ B
Q’
rf
0
βmm =1
βim
β 系数含义
β 系数表示证券或组合的系统风险 根据β 系数将证券或组合分为两种 SML上的B点在m点的左边,其β 系数值 小于1。表明证券B的变动幅度小于整个 市场的变动,称为防卫性证券或证券组 合(defensive securities) SML上的A点在m点的右边,其β 系数值 大于1。表明A的变动幅度大于整个市场 的变动,称为攻击性证券或证券组合 (Aggressive securities)
处在SML上的投资组合点,处于均衡状态。如图 中的m、Q点和O点 高于或低于直线SML的点,表示投资组合不是处 于均衡状态。如图中的 O’点和Q’点 市场组合m的β 系数β mm=1,表示其与整个市 场的波动相同,即,其预期收益率等于市场平 均预期收益率Em SML对证券组合价格有制约作用 市场处于均衡状态时,SML可以决定单个证券或 组合的预期收益率,也可以决定其价格
事后β 系数的估计
所谓事后β 系数,是从市场的实际表现,来估计过 去到现在一段时期以来,实际表现的β 值是多大, 因而它属于一个实证而非预测的范畴 由于用的是历史的数据,所以也称为历史的β 方法 假定α i,β i为常数。用资产i的收益率和市场价格 指数收益(市场组合收益率替代物)的历史数据, 建立线性回归模型,得到α i和β i的估计值α *i, β *i: rit=α i+β irmt+ε it ,t=1,2,…,T 具体估计过程分选取样本和估计两个步骤 分段计算β 系数
一般所说的CAPM就是传统的标准的 在一定假设条件下成立 不“传统的标准的”CAPM,是对假设 条件的一些放宽 本章主要介绍“传统的”

资产定价模型(CAPM)

CAPM理论CAPM模型是对风险和收益如何定价和度量的均衡理论,根本作用在于确认期望收益和风险之间的关系,揭示市场是否存在非正常收益.一个资产的预期回报率与衡量该资产风险的一个尺度――贝塔值相联系。

1.资本资产定价模式(CAPM)由美国财务学家Treynor(1961),Sharpe(1964),Lintner(1965),Mossin(1966)等人于1960年代所发展出来。

2.其目的是在协助投资人决定资本资产的价格,即在市场均衡时,证券要求报酬率与证券的市场风险(系统性风险)间的线性关系。

3.市场风险系数是用β值来衡量。

资本资产(capital asset)指股票、债券等有价证券。

4.CAPM所考虑的是不可分散的风险(市场风险)对证券要求报酬率之影响,其已假定投资人可作完全多角化的投资来分散可分散的风险(公司特有风险),故此时只有无法分散的风险,才是投资人所关心的风险,因此也只有这些风险,可以获得风险贴水。

二、CAPM之假设:1.投资者的行为可以用均方(Mean─Variance)准则来描述,投资者效用受期望报酬率与变异数两项影响,假设投资人为风险规避者(效用函数为凹性),或假定证券报酬率的分配为常态分配。

2.证券市场的买卖人数众多,投资人为价格接受者3.完美市场假设:交易市场中,没有交易成本、交易税等,且证券可无限制分割。

4.同构型预期:所有投资者对各种投资标的之预期报酬率和风险的看法是相同的。

5.所有投资人可用无风险利率无限制借贷,且借款利率=贷款利率=无风险利率(Rf )。

6.所有资产均可交易,包括人力资本(human capital)。

7.对融券放空无限制。

三、CAPM之性质:1.任何风险性资产的预期报酬率=无风险利率+资产风险溢酬。

2.资产风险溢酬=风险的价格*风险的数量3.风险的价格= E(Rm) - Rf(SML的斜率)4.风险的数量=β5.证券市场线(SML)的斜率等于市场风险贴水,当投资人的风险规避程度愈高,则SML 的斜率愈大,证券的风险溢酬就愈大,证券的要求报酬率也愈高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档