最新1-2坐标计算基本公式(曲线)
平面直角坐标系中的基本公式

平面直角坐标系中的基本公式在平面直角坐标系中,我们可以使用基本公式来描述二维空间中点的位置、距离、长度、角度等各种属性。
下面是一些常用的基本公式:1.点的坐标:平面直角坐标系中的点可以表示为一个有序对(x,y),其中x表示横坐标(沿x轴的水平距离),y表示纵坐标(沿y轴的垂直距离)。
2.线段长度:设平面直角坐标系中有两个点A(x1,y1)和B(x2,y2),则线段AB的长度可以通过以下公式计算:AB=√((x2-x1)²+(y2-y1)²)3.点到坐标轴的距离:设平面直角坐标系中有一个点P(x,y),则点P 到x轴的距离为,y,到y轴的距离为,x。
4.斜率:设平面直角坐标系中有两个点A(x1,y1)和B(x2,y2),则线段AB的斜率可以通过以下公式计算:斜率k=(y2-y1)/(x2-x1)5.中点:设平面直角坐标系中有两个点A(x1,y1)和B(x2,y2),则线段AB的中点坐标为:中点M((x1+x2)/2,(y1+y2)/2)6.坐标轴正向与象限:在平面直角坐标系中,x轴正向向右,y轴正向向上。
同时,将坐标轴所形成的四个象限按照逆时针方向分别称为第一象限、第二象限、第三象限和第四象限。
7.角的度量:在平面直角坐标系中,角的度量可以使用弧度或者角度来表示。
常用的角度制中,一个完整的圆的度数为360°。
而弧度制中,一个完整的圆的弧度数为2π弧度。
8.同位角与同旁角:在平面直角坐标系中,如果两条射线的起点、终点分别与两条相互垂直的射线的起点、终点重合,则这两条射线分别被称为同位角。
如果两条射线的起点分别位于两条相互垂直的射线的起点的同侧或者终点位于两条相互垂直的射线的终点的同侧,则这两条射线分别被称为同旁角。
9. 三角函数:在平面直角坐标系中,根据点的位置与坐标轴的关系,可以定义一些重要的三角函数,如正弦函数sin(θ)、余弦函数cos(θ)、正切函数tan(θ)等,其中θ 表示角的度数或弧度数。
坐标计算的基本公式

坐标计算的基本公式坐标计算是一种用于确定一个点在二维或三维平面上位置的数学方法。
它是数学、物理学和计算机科学等领域中经常应用的基本技术。
在坐标计算中,我们使用坐标轴来表示空间中的位置,然后使用一些公式和算法来确定这些位置。
在二维平面坐标计算中,我们通常使用直角坐标系,它由两个垂直的轴组成:x轴和y轴。
点在这个平面上的位置由一个有序对(x,y)表示,其中x是水平轴上的位置,y是垂直轴上的位置。
基本的二维平面坐标计算公式包括:1.计算两点之间的距离:两点之间的距离可以使用勾股定理来计算。
如果两点的坐标分别为(x1,y1)和(x2,y2),则它们之间的距离为:d=√((x2-x1)²+(y2-y1)²)2.计算两点之间的中点:两点的中点是连接这两点的线段的中间点。
它的坐标可以通过两点的坐标的平均值来计算:中点的x坐标=(x1+x2)/2中点的y坐标=(y1+y2)/23.计算点绕原点旋转后的新坐标:对于给定的点(x,y),绕原点逆时针旋转θ角度后的新坐标(x',y')可以通过以下公式计算:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)4.计算两条直线的交点:两条直线可以使用斜率和截距来表示。
如果两条直线的斜率分别为m1和m2,截距分别为b1和b2,则它们的交点可以通过以下公式计算:x=(b2-b1)/(m1-m2)y=m1*x+b1在三维空间中,我们通常使用三维直角坐标系,由三个相互垂直的轴组成:x轴、y轴和z轴。
点在这个空间中的位置由一个有序三元组(x,y,z)表示,其中x是水平轴上的位置,y是垂直轴上的位置,z是垂直于二者的轴上的位置。
基本的三维坐标计算公式包括:1.计算两点之间的距离:两点之间的距离可以使用三维空间中的勾股定理来计算。
如果两点的坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的距离为:d=√((x2-x1)²+(y2-y1)²+(z2-z1)²)2.计算两点之间的中点:两点的中点是连接这两点的线段的中间点。
坐标计算公式

坐标计算公式一、计算公式1、圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ)×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X、△Y代表增量值。
X、Y代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径2、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2LS2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×CL代表起算点到准备算的距离。
LS代表缓和曲线总长。
X1、Y1代表起算点坐标值。
3、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L代表起算点到准备算的距离。
4、左右边桩计算方法X边=X中+cos(α±90°)×LY边=Y中+sin(α±90°)×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
二、例题解析例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.90 1Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943 求DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″- 90°)×3.75=86439.082Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″- 90°)×3.75=886.384线路右侧计算:X边=X中+cos(α±90°)×LX边=86437.901+cos(18°21′47″+ 90°)×7.05=86435.680Y边=Y中+sin(α±90°)×LY边=889.943+sin(18°21′47″+90°)×7.05=896.634例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″ X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY点坐标,也可以求ZH点到HY点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120)}×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086 Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832 求DK186+541.02里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246 线路右侧计算:X边=X中+cos(α±90°)×LX边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026 Y边=Y中+sin(α±90°)×LY边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574 缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时,此公式只能从两头往中间推,只能从ZH点往HY点推,HZ点往YH点推算,如果YH往HZ点推算坐标,公式里的β为β2/3.例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″ X1=86552.086 Y1=926.832 曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH点坐标,也可以求QZ点坐标或任意圆曲线一点坐标.解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ)×R△Y=(1-cos17°09′36.31″)×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2)×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2)×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)=16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩,左侧3.75m,右侧7.05m.解:根据公式线路左侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″-90°)×3.75=87290.012 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″-90°)×3.75=1032.155线路右侧计算:X边=X中+cos(α±90°)×LX边=87290.023+cos(359°49′40.33″+90°)×7.05=87290.044 Y边=Y中+sin(α±90°)×LY边=1035.905+sin(359°49′40.33″+90°)×7.05=1042.955三、公式解析公式解析一.坐标转换X =A +NCOSα-ESINαY =B +NSINα+ECOSα N=(X-A) COSα±(Y-B)SINα E=(Y-B)COSα±(X-A)SINαA,B为施工坐标系坐标原点α为施工坐标系与北京坐标系X轴的夹角(旋转角)即大地坐标系方位角X,Y为北京坐标值N,E为施工坐标值二.方位角计算1.直线段方位角: α=tanˉ¹ [(Yb-Ya)/(Xb-Xa)]2.交点转角角度: α=2 tanˉ¹ (T/R)计算结果①为﹢且<360,则用原数;②为﹢且>360,则减去360;③为﹣,则加上180.3.缓和曲线上切线角: α=ƟZH±90°*Lo²/(π*R* Ls)α= Lo/(2ρ)=Lo²/(2 A²)=Lo²/(2R*Ls)ρ—该点的曲率半径4.圆曲线上切线角: α=ƟHY±180°*Lo/(π*R)ƟZH—直缓点方位角, ƟHY—缓圆点方位角,注:以计算方向为准,左偏,取"﹣";右偏,取"﹢"。
坐标推算计算公式

坐标推算计算公式
坐标推算计算公式是根据已知坐标点的位置和距离,推算出另一个坐标点的位置。
常用的坐标推算计算公式有:
1. 一维坐标推算公式:x2 = x1 + d,其中x1和x2分别为已知坐标点和待求坐标点的位置,d为已知坐标点到待求坐标点的距离。
2. 二维坐标推算公式:根据已知坐标点A(x1,y1)和已知坐标点B(x2,y2)之间的距离d和角度θ,可以求解待求坐标点C(x,y)的位置。
具体公式为:x = x1 + d * cosθ, y = y1 + d * sinθ。
3. 三维坐标推算公式:根据已知坐标点A(x1,y1,z1)和已知坐标点B(x2,y2,z2)之间的距离d和角度θ,可以求解待求坐标点C(x,y,z)的位置。
具体公式为:x = x1 + d * sinθ * cosψ, y = y1 + d * sinθ * sinψ, z = z1 + d * cosθ。
这些公式都是根据几何关系和三角函数来推算坐标点位置的。
需要根据实际情况选择适用的公式进行计算。
二维坐标变换公式

二维坐标变换公式一、二维坐标平移变换公式。
1. 沿x轴方向平移。
- 设原坐标为(x,y),沿x轴方向平移a个单位(a>0向右平移,a < 0向左平移),则平移后的坐标(x',y')满足:- x'=x + a,y'=y。
2. 沿y轴方向平移。
- 设原坐标为(x,y),沿y轴方向平移b个单位(b>0向上平移,b < 0向下平移),则平移后的坐标(x',y')满足:- x'=x,y'=y + b。
3. 一般平移(沿x轴和y轴同时平移)- 设原坐标为(x,y),沿x轴方向平移a个单位,沿y轴方向平移b个单位,则平移后的坐标(x',y')满足:- x'=x + a,y'=y + b。
二、二维坐标旋转变换公式(绕原点旋转)1. 逆时针旋转。
- 设原坐标为(x,y),绕原点逆时针旋转θ角度,则旋转后的坐标(x',y')满足:- x'=xcosθ - ysinθ- y'=xsinθ + ycosθ。
2. 顺时针旋转。
- 当绕原点顺时针旋转θ角度时,相当于逆时针旋转-θ角度。
则旋转后的坐标(x',y')满足:- x'=xcos(-θ)-ysin(-θ)=xcosθ + ysinθ- y'=xsin(-θ)+ycos(-θ)= - xsinθ + ycosθ三、二维坐标缩放变换公式(以原点为中心缩放)1. 沿x轴和y轴等比例缩放。
- 设原坐标为(x,y),缩放因子为k(k>1放大,0 < k < 1缩小),则缩放后的坐标(x',y')满足:- x'=kx,y' = ky。
2. 沿x轴和y轴不等比例缩放。
- 设原坐标为(x,y),沿x轴方向的缩放因子为k_x,沿y轴方向的缩放因子为k_y,则缩放后的坐标(x',y')满足:- x'=k_xx,y'=k_yy。
测量坐标计算公式大全

测量坐标计算公式大全一、两点间距离公式(平面直角坐标系)设两点坐标分别为A(x_1,y_1),B(x_2,y_2),则两点间的距离d为:d = √((x_2 - x_1)^2+(y_2 - y_1)^2)例如,A(1,2),B(4,6),则x_1 = 1,y_1=2,x_2 = 4,y_2 = 6d=√((4 - 1)^2+(6 - 2)^2)=√(3^2 + 4^2)=√(9+16)=√(25) = 5二、中点坐标公式(平面直角坐标系)设两点坐标分别为A(x_1,y_1),B(x_2,y_2),则AB中点M的坐标为(x_m,y_m),其中。
x_m=(x_1 + x_2)/(2)y_m=(y_1 + y_2)/(2)例如,A( - 2,3),B(4,-1),则中点M的坐标为。
x_m=(-2+4)/(2)=1y_m=(3+(-1))/(2)=1即中点M(1,1)三、直线的斜率公式(平面直角坐标系)设直线上两点坐标为A(x_1,y_1),B(x_2,y_2)(x_1≠ x_2),则直线AB的斜率k 为:k=(y_2 - y_1)/(x_2 - x_1)例如,A(1,2),B(3,6),则k=(6 - 2)/(3 - 1)=(4)/(2)=2四、直线的点斜式方程(平面直角坐标系)已知直线过点(x_0,y_0),斜率为k,则直线方程为y - y_0=k(x - x_0)例如,直线过点(1,3),斜率k = 2,则直线方程为y-3 = 2(x - 1),即y=2x+1五、平面直角坐标系中坐标旋转公式。
设点P(x,y)绕原点旋转θ角后得到点P'(x',y')x'=xcosθ - ysinθy'=xsinθ + ycosθ六、极坐标与直角坐标的转换公式。
1. 直角坐标(x,y)转换为极坐标(ρ,θ)ρ=√(x^2 + y^2)θ=arctan(y)/(x)(x≠0)2. 极坐标(ρ,θ)转换为直角坐标(x,y)x = ρcosθy=ρsinθ七、空间直角坐标系中两点间距离公式。
曲线坐标计算公式

一、简单型单曲线(即没有缓和曲线,只有圆曲线 x=R*sina y=R*(1-cosaa=(LP/R*(180/πx 、y :分别为切线横距和纵距R :曲线半径a :待定点到曲线起点沿曲线的弧长对应的圆心角LP :待定点到曲线起点的曲线长二、基本型单曲线(即有缓和曲线1、缓和曲线段内x=LP-(LP5/(40*R2*LS2y=(LP3/(6*R*LS-(LP7/(336*R3*LS32、纯圆曲线段内x=R*sina+qy=R*(1-cosa+pa=((LP-LS/R*(180/π+bb=LS/2R(弧度LP :测点至 ZH 或 HZ 曲线长LS :缓和曲线长b :缓和曲线角q :切线增长值 =LS/2-LS3/(240*R2p :内移值 =LS2/(24*R注:红色为次方,其余符号意义同前一、简单型单曲线(即没有缓和曲线,只有圆曲线 x=R*sina y=R*(1-cosaa=(LP/R*(180/πx 、y :分别为切线横距和纵距R :曲线半径a :待定点到曲线起点沿曲线的弧长对应的圆心角LP :待定点到曲线起点的曲线长二、基本型单曲线(即有缓和曲线1、缓和曲线段内x=LP-(LP5/(40*R2*LS2y=(LP3/(6*R*LS-(LP7/(336*R3*LS32、纯圆曲线段内x=R*sina+qy=R*(1-cosa+pa=((LP-LS/R*(180/π+bb=LS/2R(弧度LP :测点至 ZH 或 HZ 曲线长LS :缓和曲线长b :缓和曲线角q :切线增长值 =LS/2-LS3/(240*R2p :内移值 =LS2/(24*R注:红色为次方,其余符号意义同前。
曲线坐标计算公式

曲线段坐标计算公式缓和曲线段:1、曲线长=里程桩号-起点桩号2、缓和曲线长=已知3、方位角=缓和段起始边为0曲线长L²4、转角=6*R*缓曲长L。
5、转后方位角=方位角+转角曲线长L^56、 X=曲线长L-40R²*缓曲长L。
曲线长L³7、 Y= -6*R*缓曲长L。
8、L=SQRT(X²+Y²)9、计算点坐标:X=COS(转后方位角)*L+起点坐标X Y=SIN(转后方位角)*L+起点坐标Y曲线长L²10、切线角=2*R*缓曲长L。
11、切线方位角=方位角+切线角圆曲线段:12、曲线长=里程桩号-起点桩号13、方位角=缓和曲线的切线方位角曲线长L 180°14、转角= (×可转换为“度”) 2*R π15、转后方位角=方位角+转角曲线长L^516、X=曲线长L-40R²*缓曲长L。
曲线长L³17、Y= -6*R*缓曲长L。
18、L=2*SIN(转后方位角)*R19、计算点坐标:X=COS(转后方位角)*L+起点坐标XY=SIN(转后方位角)*L+起点坐标Y曲线长L²20、切线角=2*R*缓曲长L。
21、切线方位角=方位角+切线角边桩放样坐标计算公式:π左侧 X=D*COS (α - )+X2πY=D*COS (α - )+Y2π右侧 X=D*COS (α + )+X2πY=D*COS (α + )+Y2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-2坐标计算基本公
式(曲线)
单圆曲线的测设 一、 圆曲线要素及其计算 R ,α已知 2αtg R T ⋅= 180πα⋅⋅=R L )12(-=αεR E L T D -=α 二、 圆曲线主点里程的计算 ZY 直圆点,QZ 曲中点,YZ 圆直点 JD 的桩号由中线丈量中得到,根据交点的桩号和曲线测设元素,计算主点的桩号 ZY 桩号=JD 桩号-T QZ 桩号=ZY 桩号+2L YZ 桩号=QZ 桩号+2L JD 桩号=QZ 桩号+2D (校核) 三、 圆曲线主点的测设 1)zy 点:置J 于i JD ,照准后交点1-i JD 或转点,沿此方向测设切线长T ,得zy 。
丈量zy 至最近一个直线桩的距离,而桩号之差在容许范围内打桩。
2)yz 点:照准前交点1+i JD 或转点,量取T 长,打桩。
二、有缓和曲线的圆曲线计算公式
1、曲线的基本公式
«Skip Record If...» «Skip Record If...»——缓和曲线全长。
(1)切线角公式
«Skip Record If...» «Skip Record If...»——缓和曲线长«Skip Record If...»所对应的中心角。
(2)缓和曲线角公式
«Skip Record If...» «Skip Record If...»——缓和曲线全长«Skip Record If...»所对应的中心角亦称缓和曲线角。
(3)缓和曲线的参数方程
«Skip Record If...»
(4)圆曲线终点的坐标
«Skip Record If...»
2、曲线要素计算公式
(1)内移距p 和切线增长q的计算
«Skip Record If...»
(2)切线长«Skip Record If...»
曲线长«Skip Record If...»,其中圆曲线长«Skip Record If...»。
外距«Skip Record If...»;切曲差«Skip Record If...»
三、有缓和曲线的圆曲线主点测设方法
«Skip Record If...»
1.架仪JD i,后视JD i-1,量取T H,得ZH点;后视JD i+1,量取T H,得HZ 点;在分角线方向量取E H,得QZ点。
2.分别在ZH、HZ点架仪,后视JD i方向,量取x0,再在此方向垂直方向上量取y0,得HY和YH点。
四、有缓和曲线的圆曲线详细测设方法
1、偏角法
(1)当点位于缓和曲线上,有:
«Skip Record If...»; «Skip Record If...»
距离:用曲线长l来代替弦长。
放样出第1点后,放样第2点时,用偏角和距离l交会得到。
(2)当点位于圆曲线上
方法:架仪HY (或YH),后视
ZH(或HZ),拨角b0,即找到
了切线方向,再按单圆曲线偏
角法进行。
«Skip Record If...»
2、切线支距法
(1)当点位于缓和曲线上,有:
«Skip Record If...»
(2)当点位于圆曲线上,有:
«Skip Record If...»其中,«Skip Record If...»,«Skip Record If...»为点到坐标原点的曲线长。