第六章随机信号通过非线性系统习题

合集下载

《随机过程》第6章习题及参考答案

《随机过程》第6章习题及参考答案

湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。

解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。

随机信号处理考试试题

随机信号处理考试试题

(2)、如果不用匹配滤波器,而用滤波器为 信噪比为多少,你认为 的最佳值应该是多少? 解: (1)根据匹配滤波原理,输出的最大信噪比为:
,则输出最大
(4 分) (2)该系统为线性系统,满足线性可加性,输出包含两部分,一部分是 信号通过系统后的输出信号,另外一部分是白噪声通过系统后的输出噪 声,两部分没有差拍项,假设输出的信号为: ,噪声为: ,不难
的自相关函数可表示为
(4 分) , 如右图所示,
所以 2)按噪声等效通能带定义
(5 分)
, (可根据傅立业反变换在 点的取值)
七、计算题(共 1 小题,每小题 10 分,共 10) (5)
设线性滤波器输入为
,其中 的功率谱密度为
的白噪声, 为与 统计独立的矩形脉冲
求:(1)、利用匹配滤波器时,输出端的最大信噪比为多少?
得出,输出信号的最大值在 t=T 时刻,此时
使得信噪比最大的 值应该满足:
这时
,正是匹配滤波器的情况。
九、计算题(共 1 小题,每小题 10 分,共 10 分)
设有如下两种假设,观测次数为 N 次,
(6 分)
其中 服从均值为 0 方差为 的正态分布,假设 求
=0.5,
(1)、最小错误概率准则下的判决表达式;
3、设平稳随机序列 通过一个冲击响应为 表示,那么,下列正确的有:( a、d )
的线性系统,其输出用
(A)
(B)
(C)
(D)
4、 为 的希尔伯特变换,下列表达正确的有:(a、c、d )
(A) 与 的功率谱相等 (B)
(C)
(D) 与 在同一时刻相互正交
5、对于一个二元假设检验问题,判决表达式为:如果 T(z)>g,则判 成

随机信号处理教程第6章随机信号通过非线性系统

随机信号处理教程第6章随机信号通过非线性系统

信号的调制和解调
01
02
03
调制过程
在非线性系统中,输入信 号会受到调制,使得信号 的参数发生变化,如幅度、 频率或相位等。
解调过程
对调制后的信号进行解调, 恢复出原始的信号参数, 以便进一步处理或使用。
调频与调相
在非线性系统中,调制和 解调的方式可以是调频或 调相,具体取决于系统的 特性和应用需求。
音频处理中的非线性系统
音频压缩
音频压缩技术利用非线性系统来减小音频文件的大小,同时保持音频质量。压 缩算法通过非线性变换和量化过程来去除音频信号中的冗余信息。
音频特效
音频处理软件中的非线性系统用于创建各种音效和特效,如失真、混响、均衡 器和自动增益控制等。这些效果通过将音频信号通过非线性函数来实现。
应用实例
给出了随机信号通过非线性系统的应用实 例,如通信系统中的非线性失真、音频处 理中的压缩效应等。
非线性系统的发展趋势和未来展望
新技术与新方法
随着科学技术的不断发展,新的非线性系 统建模方法和分析技术将不断涌现,如深
度学习在非线性系统建模中的应用等。
跨学科融合
非线性系统理论与其他领域的交叉融合将 进一步加深,如与控制理论、人工智能等 领域的结合。
升级系统的硬件设备,提升性能表现。
系统集成优化
优化系统内部各模块之间的集成方式, 提高整体性能。
05
实际应用案例
通信系统中的非线性系统
数字信号处理
在通信系统中,数字信号经过非线性系统可能导致信号失真 ,如振幅压缩和频率偏移。这种失真可以通过数字信号处理 技术进行补偿和校正。
调制解调
在无线通信中,调制解调过程可能涉及非线性系统。例如,在 QAM(Quadrature Amplitude Modulation)调制中,信号 通过非线性调制器进行调制,然后通过非线性解调器进行解调。

随机信号分析课后习题答案

随机信号分析课后习题答案

随机信号分析课后习题答案随机信号分析课后习题答案随机信号分析是现代通信系统设计和信号处理领域中的重要基础知识。

通过对随机信号的分析,我们可以更好地理解和处理噪声、干扰等随机性因素对通信系统性能的影响。

下面是一些关于随机信号分析的课后习题及其答案,希望对大家的学习有所帮助。

1. 什么是随机信号?随机信号是在时间域上具有随机性质的信号。

与确定性信号不同,随机信号的每个样本值都是随机变量,其取值不是确定的。

随机信号可以用统计特性来描述,如均值、方差、功率谱密度等。

2. 什么是平稳随机信号?平稳随机信号是指在统计性质上不随时间变化的随机信号。

具体来说,平稳随机信号的均值和自相关函数不随时间变化。

平稳随机信号在实际应用中较为常见,因为它们具有一些方便的数学性质,可以简化信号处理的分析和设计。

3. 如何计算随机信号的均值?随机信号的均值可以通过对信号样本值的求平均来计算。

对于离散时间随机信号,均值可以表示为:E[x[n]] = (1/N) * Σ(x[n])其中,E[x[n]]表示信号x[n]的均值,N表示信号的样本数,Σ表示求和运算。

4. 如何计算随机信号的方差?随机信号的方差可以用均方差来表示。

对于离散时间随机信号,方差可以表示为:Var[x[n]] = E[(x[n] - E[x[n]])^2]其中,Var[x[n]]表示信号x[n]的方差,E[x[n]]表示信号的均值。

5. 什么是自相关函数?自相关函数是用来描述随机信号与其自身在不同时间延迟下的相似性的函数。

自相关函数可以用来分析信号的周期性、相关性等特性。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = E[x[n] * x[n-m]]其中,Rxx[m]表示信号x[n]的自相关函数,E[ ]表示期望运算。

6. 如何计算随机信号的自相关函数?随机信号的自相关函数可以通过对信号样本值的乘积进行求平均来计算。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = (1/N) * Σ(x[n] * x[n-m])其中,Rxx[m]表示信号x[n]的自相关函数,N表示信号的样本数,Σ表示求和运算。

信号与系统第六章习题答案

信号与系统第六章习题答案

第六章 离散系统的Z域分析 6.1学习重点 1、离散信号z 域分析法—z变换,深刻理解其定义、收敛域以及基本性质;会根据z变换的定义以及性质求常用序列的z变换;理解z变换与拉普拉斯变换的关系。

2、熟练应用幂级数展开法、部分分式法及留数法,求z 反变换。

3、离散系统z 域分析法,求解零输入响应、零状态响应以及全响应。

4、z 域系统函数()z H 及其应用。

5、离散系统的稳定性。

6、离散时间系统的z 域模拟图。

7、用MATLAB 进行离散系统的Z 域分析。

6.2 教材习题同步解析 6.1 求下列序列的z 变换,并说明其收敛域。

(1)n 31,0≥n (2)n−−31,0≥n(3)nn−+ 3121,0≥n (4)4cos πn ,0≥n(5)+42sin ππn ,0≥n 【知识点窍】本题考察z 变换的定义式 【逻辑推理】对于有始序列离散信号[]n f 其z 变换的定义式为()[]∑∞=−=0n nzn f z F解:(1)该序列可看作[]n nε31()[][]∑∑∞=−∞=− == =010313131n n n nn n z z n n Z z F εε对该级数,当1311<−z ,即31>z 时,级数收敛,并有 ()13331111−=−=−z zz z F其收敛域为z 平面上半经31=z 的圆外区域 (2)该序列可看作[]()[]n n nnεε331−=−−()()[][]()[]()∑∑∞=−∞=−−=−=−=010333n nn nnnzzn n Z z F εε对该级数,当131<−−z ,即3>z 时,级数收敛,并有()()33111+=−−=−z zz z F 其收敛域为z 平面上半经3=z 的圆外区域(3)该序列可看作[][]n n nn n n εε+ = + −3213121()[][]()∑∑∑∞=−∞=−∞=−+ =+ = + =01010*********n nn n n nn n n n z z z n n Z z F εε对该级数,当1211<−z 且131<−z ,即3>z 时,级数收敛,并有 ()3122311211111−+−=−+−=−−z zz z z zz F 其收敛域为z 平面上半经3=z 的圆外区域(4)该序列可看作[]n n επ4cos()[]∑∑∑∑∞=−−∞=−−∞=−∞=−+=+== =0140140440*******cos 4cos n nj n nj nn j j n n z e z e z e e z n n n Z z F πππππεπ对该级数,当114<−ze j π且114<−−zejπ,即1>z 时,级数收敛,并有()122214cos 24cos 21112111212222441414+−−=+−−=−+−=−×+−×=−−−−z z zz z z z z e z z e z z z eze z F j j j j ππππππ其收敛域为z 平面上半经1=z 的圆外区域 (5)该序列可看作[][][]n n n n n n n n εππεππππεππ+=+= +2cos 2sin 222sin 4cos 2cos 4sin 42sin()[]()122212212212cos 22cos 2212cos 22sin 222cos 222sin 222cos 2sin 222222222200++=+++=+−−++−=+=+=∑∑∞=−∞=−z z z z z z z z z z z z z z z n z n n n n Z z F n nn n ππππππεππ 其收敛域为z 平面上半经1=z 的圆外区域 6.2 已知[]1↔n δ,[]a z z n a n −↔ε,[]()21−↔z z n n ε, 试利用z 变换的性质求下列序列的z 变换。

随机信号处理教程 第6章 随机信号通过非线性系统

随机信号处理教程 第6章 随机信号通过非线性系统


在实际中,还存在非线性系统的传输特性在 , 上不绝 对可积,且当 x 0 时 g x 不为零的情况。这时,式 (6.3.4)就不能用了。因为该式是在傅里叶积分的下限限 制为零的前提下引入了衰减因子 e x ( 0 )后得出的, 否则,在 x 0 的范围内 e x变成增长因子,不但不起收 敛作用,反而使积分更快地发散。这种情况下,我们可定 义半波传输特性为 g ( x) x 0 g ( x) (6.3.13) x0 0
BY (t1, t2 )

式中, f X 2 ( x1, x2 ; t1, t2 )
(6.2.5) 为输入随机信号的二维概率密度函数。


g ( x1 )g ( x2 ) f X 2 ( x1, x2 ; t1, t2 )dx1x2
6.2 直接分析法
平方律检波器输出端 功率谱密度的一般公式
随机信号处理教程
——献给进入信息领域学习的你!
随机信号处理教程
第1章 概率论基础 第2章 随机过程 第3章 随机过程的功率谱密度 第4章 随机信号通过线性系统 第5章 窄带系统和窄带随机信号 第6章 随机信号通过非线性系统 第7章 马尔可夫过程
第六章 随机信号通过非线性系统
1 2 引言 直接分析法 特征函数法 级数展开法
ai a j E X i (t ) X j (t )
i 0 j 0



ai E X i (t )
i 0



均值 均方值 自相关函数
6.1 引言
6.2 直接分析法
所谓直接分析法,就是运用概率论中有关随机变量函数变 换的分析方法及各种结果来分析随机信号通过非线性系统 的问题。这种方法的特点是简单、直观。 如果已知输入随机信号 X (t )的概率密度函数,则根据非线 性系统的传输特性 y g ( x) ,采用第一章求解随机变量函数 的概率分布的方法,确定输出随机信号Y (t ) 的概率密度函 数。

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。

根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。

二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。

2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。

图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。

图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。

这里雷达接收到的目标回波信号就是延时信号。

3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。

信号系统习题(PDF)

信号系统习题(PDF)

1.判断下列系统的线性、时不变性、因果性和记忆性。

(解析P7) ①()10()()dy t y t f t dt += ②()()(10)dy t y t f t dt+=+ ③2()()()dy t t y t f t dt+= ④2()(10)()y t f t f t =++2.判断下列系统的线性、时不变性和因果性。

(解析P7) ①20()()sin ()y t y t t at f t =+ ②()()()y t f t f t b =⋅−3.某系统,当输入为()tδτ−时,输出为()()(3)h t u t u t ττ=−−−,问该系统是否为因果系统?是否为时不变系统?说明理由。

4.下列信号属于功率信号的是(解析P6) ①cos ()tu t ②()teu t − ③()t te u t − ④te−5. 画出函数波形图:2()(1)f t u t =−(指导P12)6.已知()()2(1)(2)(2),f t tu t u t t u t =−−+−−画出()f t 波形。

(指导P13)7.根据1.10图中(32)f t −+的波形,画出()f t 波形。

(指导P18)8.已知()f t 波形波形如例1.11图所示,试画出1(2)2f t −−的波形。

(指导P19)9.已知(52)f t −的波形如图例1.12图所示,求()f t 波形。

(指导P20)10.求下列函数值 ①432'(652)(1)t t t t dt δ∞+++−∫②3'()te d τδττ−−∞∫ ③'2(9)t dt δ+∞−∞−∫(指导P24)11.求信号0.20.3()j n j n x n ee ππ−=+的周期。

(指导P36)12.设()x t 是复指数信号:0()j tx t eΩ=,其角频率为0Ω,基本周期为02T π=Ω。

如果离散时间序列是通过对()x t 以取样间隔s T 进行均匀取样的结果,即00()()s j nT j n s x n x nT e e ωΩ===。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 非线性系统的传输特性为:()x
y g x be ==其中b 为正的实常数。

已知输入()X t 是一个均值为m x ,方
差为 2x σ 的平稳高斯噪声。

试求 (1)输出随机信号Y (t )的一维概率密度函数;
(2)输出随机信号Y (t )的均值和方差。

作业 2 非线性系统的传输特性为 ()y g x b x ==,b 为正的实常数。

已知输入()X t 是一个均值为0方差为1 的平稳高斯噪声。

试求
(1)输出随机信号()Y t 的一维概率密度函数;
(2)输出随机信号()Y t 的平均功率。

作业 3.单向线性检波器的传输特性为
||0()00b x x y g x x >⎧==⎨≤⎩
输入()X t 是一个均值0的平稳高斯信号,其相关函数为()x R τ。

求检波器输出随机信号()Y t 的均值和方差。

4.设有非线性系统如图所示。

输入随机信号()X t 为高斯白噪声,其功率谱密度0()2x N
S ω=。

若电路本
身热噪声忽略不计,且平方律检波器的输入阻抗为无穷大。

试求输出随机信号的自相关函数和功率谱密度函数。

5. 非线性系统的传输特性为
20()00
x
e x y g x x ⎧≥==⎨<⎩ 已知输入()X t 服从标准正态分布。

试采用特征函数法求出输出随机信号的()Y t 自相关函数。

6. ()X t 是零均值正态随机过程,其自相关函数为:
()cos R ae αττβτ-=
试证,若2()()y t x t =,则222()(1cos )y R a e e αταττβτ--=++
作业 7.设非线性系统的传输特性为2
y x =。

若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的一维概率密度函数和二维概率密度函数。

8. 设非线性系统的传输特性y x =。

若输入随机信号()X t 是0均值单位方差,相关系数为()r τ的高斯平稳过程,求输出()y t 的均值和自相关函数。

作业 9. 设非线性系统的传输特性y x =。

若输入随机信号()X t 是0均值的高斯平稳过程,求输出低频直流功率、低频总功率和低频起伏功率。

10. 一般说来,信号和噪声同时作用于非线性系统的输入端,其输出功率有三部分组成: 0()s Ω---信号自身所得到的输出平均功率
0()N Ω---噪声自身所得到的输出平均功率
0()SN Ω---信号与噪声得到的输出平均功率
对于通信系统中的非线性系统,计算输出信噪比的公式为:
0000
()()()s N SN S N Ω⎛⎫= ⎪Ω+Ω⎝⎭ 对于通信系统中的非线性系统,计算输出信噪比的公式为:
000
0()()()s SN N S N Ω+Ω⎛⎫= ⎪Ω⎝⎭ 设窄带中放的幅频特性为:
0,()0,K H ωωωω⎧±≤∆=⎨⎩
其他 其输入为()()t t S t N t +,其中信号0()(1)sin t S t A t ξω=+,ξ是(-1,1)间均匀分布的随机变量。

()t N t 是单边功率谱密度为0N 的白噪声。

求()()t t S t N t +通过窄带中放,再通过包络检波,输出信号的信噪比。

11. 设窄带中放的幅频特性为:
0,()0,K H ωωωω⎧±≤∆=⎨⎩
其他 其输入为()()t t S t N t +,其中信号0()sin t S t A t ω=,ξ是(-1,1)间均匀分布的随机变量。

()t N t 是单边功率谱密度为0N 的白噪声。

求()()t t S t N t +通过窄带中放,再通过平方率检波器,输出信号的信噪比。

12. 设3
()()()Y t X t X t =+,若()X t 是理想白噪声,求()Y t 的自相关函数。

13. 设非线性系统的传输特性为2
()41y t x x =++,若输入随机过程()X t 是0均值方差为1的平稳高斯白噪声。

试计算输出随机过程低频分量的均值和方差。

14. 已知非线性系统的传输特性为 ()n y t x =
若输入随机过程()X t 是0均值 自相关函数为()x R τ 的平稳高斯噪声,证明该系统输出的自相关函数为{}!/[()/2]!()(0)()2!n n k k y x x n k k n n k R R R k ττ---=∑,式中,当n 是偶数时,0,2,4,......k =当n 是奇数时,0,1,3,......k =
15. 已知非线性系统的传输特性为()()y t g x =,若输入是随机信号()X t 是0均值,相关函数为()x R τ的平高斯稳噪声,证明该系统输出的自相关函数为:
()()1201()[()][()]()!k k k y x k R E g x E g x R k ττ∞
==∑
16. 若输入()X t 是0均值,相关函数为()x R τ的平高斯稳噪声,求出无记忆系统()g x ,使得(())g x t 在区间[0,1]上均匀分布。

17. 设1()X t 和2()X t 是两个0均值的联合高斯随机过程,其相关函数为12()X X R τ,证明11()()Y t X t =和22(){()}Y t Asng X t =的互相关函数为
12212
1()()Y Y X X X R R ττ-=。

相关文档
最新文档