九年级下数学专题_圆_(知识点_试题与答案)

合集下载

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题14 圆(解析版)

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题14  圆(解析版)

专题14圆一、单选题1.(2022·宁波)已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A .236πcmB .224πcmC .216πcmD .212πcm【答案】B【解析】4624S rl πππ==⋅⋅=侧2cm , 故选B .2.(2022·温州)如图,,AB AC 是O 的两条弦,⊥OD AB 于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A .95︒B .100︒C .105︒D .130︒【答案】B【解析】解:∵OD ⊥AB ,OE ⊥AC ,∴∠ADO =90°,∠AEO =90°,∵∠DOE =130°,∴∠BAC =360°-90°-90°-130°=50°,∴∠BOC =2∠BAC =100°,故选:B .3.(2022·丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为,则改建后门洞的圆弧长是( )A .5πm 3B .8πm 3C .10πm 3D .5π+2m 3⎛⎫ ⎪⎝⎭【答案】C 【解析】如图,连接AD ,BC ,交于O 点,∵90BDC ∠=︒ ,∴BC 是直径,∴4BC ===, ∵四边形ABDC 是矩形,∴122OC OD BC ===, ∵2CD =,∴OC OD CD ==,∴COD ∆是等边三角形,∴60COD ∠=︒,∴门洞的圆弧所对的圆心角为36060300︒-︒=︒ , ∴改建后门洞的圆弧长是11300300410221801803BC πππ︒⨯︒⨯⨯==︒︒(m), 故选:C4.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M【答案】B【解析】解:∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x =∴点M 1(0)不在直线PB 上,当x =y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5.(2022·湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .B .6C .D .【答案】C【解析】 作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P '位置时,恰好过格点且P M '经过圆心O ,所以此时P M '最大,等于圆O 的直径,∵BM =4,BN =2,∴MN ==∴MQ =OQ∴OM∴2P M OM '==故选 C .6.(2022·杭州)如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+【答案】D【解析】解:当△ABC 的高AD 经过圆的圆心时,此时△ABC 的面积最大,如图所示,∵AD ⊥BC ,∴BC =2BD ,∠BOD =∠BAC =θ,在Rt △BOD 中,sin θ= 1BD BD OB =,cos θ=1OD OD OB =, ∴BD =sin θ,OD =cos θ,∴BC =2BD =2sin θ,AD =AO +OD =1+cos θ,∴S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ). 故选:D .二、填空题7.(2022·湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AD 所对的圆周角,则∠APD 的度数是______.【答案】30°##30度【解析】∵OC ⊥AB ,OD 为直径,∴BD AD =,∴∠AOB =∠BOD ,∵∠AOB =120°,∴∠AOD =60°,∴∠APD =12∠AOD =30°,故答案为:30°.8.(2022·宁波)如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.【答案】32或65【解析】解:连接OA,①当D点与O点重合时,∠CAD为90°,设圆的半径=r,∴OA=r,OC=4-r,∵AC=4,在Rt△AOC中,根据勾股定理可得:r2+4=(4-r)2,解得:r=32,即AD=AO=32;②当∠ADC=90°时,过点A作AD⊥BC于点D,∵12AO•AC=12OC•AD,∴AD=AO AC OC⋅,∵AO=32,AC=2,OC=4-r=52,∴AD=65,综上所述,AD的长为32或65,故答案为:32或65.9.(2022·金华)如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C,已知6cm,8cmAC CB==,则⊙O的半径为_____cm.【答案】253##183【解析】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+,即r 2=(r −6)2+82,解得:253r =, 即O 的半径为253cm . 故答案为:253. 10.(2022·绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =Rt △ECD 中,CD =AC ,CE 2CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 11.(2022·杭州)如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BC AD的值等于_________.【答案】3635 2 +【解析】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴CE BE EO CE=,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x a(负值舍去),∴OE a,∴AE=OA-OE=a a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴BC EC AD AE=,∴BC AD = 故答案为:36三、解答题12.(2022·绍兴)如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求AD 的长(结果保留π).(2)求证:AD 平分∠BDO .【答案】(1)43π;(2)见解析 【解析】(1)解:连接OA , ∵∠ACB =20°,∴∠AOD =40°, ∴180n r AD π=, 18040⨯π⨯6=43π=. (2)证明:OA OD =,OAD ODA ∠=∠∴, AB 切O 于点A ,OA AB ∴⊥,90B ∠=︒,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.13.(2022·台州)如图,在ABC 中,AB AC =,以AB 为直径的⊙O 与BC 交于点D ,连接AD .(1)求证:BD CD =;(2)若⊙O 与AC 相切,求B 的度数;(3)用无刻度的直尺和圆规作出劣弧AD 的中点E .(不写作法,保留作图痕迹) 【答案】(1)证明见详解;(2)45B ∠=︒;(3)作图见详解【解析】 (1)证明:∵AB 是O 的直径, ∴90ADB ∠=︒, ∴AD BC ⊥, ∵AB AC =, ∴BD CD =. (2)∵O 与AC 相切, ∴90BAC ∠=︒, 又∵AB AC =, ∴45B ∠=︒.(3)如下图,点E 就是所要作的AD 的中点.14.(2022·湖州)如图,已知在Rt △ABC 中,90C ∠=︒,D 是AB 边上一点,以BD 为直径的半圆O 与边AC 相切,切点为E ,过点O 作OF BC ⊥,垂足为F .(1)求证:OF EC =;(2)若30A ∠=︒,2BD =,求AD 的长.【答案】(1)见解析;(2)1 【解析】(1)解:如图,连接OE ,∵AC 切半圆O 于点E ,∴OE ⊥A C ,∵OF ⊥BC ,90C ∠=︒, ∴∠OEC =∠OFC =∠C =90°. ∴四边形OFCE 是矩形, ∴OF =E C ; (2)∵2BD =, ∴112122OE BD ==⨯=, ∵30A ∠=︒,OE ⊥AC , ∴2212AO OE ==⨯=, ∴211AD AO DO =-=-=.15.(2022·嘉兴)如图,在廓形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【解析】作O 关于CD 的对称点M ,则ON =MN 连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB ∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒ 即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF = ∴MEO MFO ≅(HL )∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ==∴CD =故答案为:60°;16.(2022·温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ . ①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 【答案】(1)158;(2)5544y x =+;(3)①97或2111;②199 【解析】(1)解:如图1,连结OD .设半圆O 的半径为r .∵CD 切半圆O 于点D , ∴OD CD ⊥. ∵BE CD ⊥, ∴OD BE ∥,∴△∽△COD CBE , ∴OD CO BE CB=, 即535r r -=, ∴158r =,即半圆O 的半径是158.(2)由(1)得:1555284CA CB AB =-=-⨯=. ∵5,4AP BQ x BQ ==, ∴54AP x =. ∵CP AP AC =+, ∴5544y x =+. (3)①显然90PRQ ∠<︒,所以分两种情况. ⅰ)当90RPQ ∠=︒时,如图2.∵PR CE ⊥,∴90ERP ∠=︒. ∵90E ∠=︒,∴四边形RPQE 为矩形, ∴PR QE =.∵333sin 544PR PC C y x =⋅==+, ∴33344x x +=-,∴97x =.ⅰ)当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,如图3,则四边形PHER 是矩形,∴,PH RE EH PR ==. ∵5,3CB BE ==,∴4CE ==. ∵4cos 15CR CP C y x =⋅==+, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-,由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111.②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠'∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE ,∴∠EQR =∠PRQ ,∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△,∴CP CBCR CE=, 即:x CR +=555444,解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, ∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径, ∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 17.(2022·宁波)如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠.(2)求证:△≌△BDE FDG .(3)如图2,AD 为O 的直径. ①当AB 的长为2时,求AC 的长. ②当:4:11=OF OE 时,求cos α的值. 【答案】(1)902︒∠=-BFD α;(2)见解析;(3)①3;②5cos 8α=【解析】(1)∵∠-∠=∠=AFB BFD ACB α,①又∵180∠+∠=︒AFB BFD ,② ②-①,得2180∠=︒-BFD α, ∴902︒∠=-BFD α.(2)由(1)得902︒∠=-BFD α,∵∠=∠=ADB ACB α,∴180902∠=︒-∠-︒-∠=FBD ADB BFD α,∴DB DF =. ∵FGAC ,∴∠=∠CAD DFG . ∵CAD DBE ∠=∠, ∴∠=∠DFG DBE . ∵BE FG =,∴()BDE FDG SAS △≌△. (3)①∵△≌△BDE FDG , ∴∠=∠=FDG BDE α,∴2∠=∠+∠=BDG BDF EDG α. ∵DE DG =, ∴()11809022∠=︒-∠=︒-DGE FDG α, ∴在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α, ∵AD 为O 的直径, ∴90ABD ∠=︒.∴32∠=∠-∠=ABC ABD DBG α. ∴AC 与AB 的度数之比为3∶2.∴AC 与AB 的的长度之比为3∶2, ∵2AB =, ∴3=AC . ②如图,连结BO .∵OB OD =,∴∠=∠=OBD ODB α,∴2∠=∠+∠=BOF OBD ODB α. ∵2∠=BDG α, ∴∠=∠BOF BDG . ∵902∠=∠=︒-BGD BFO α,∴△∽△BDG BOF ,设BDG 与BOF 的相似比为k , ∴==DG BDk OF BO. ∵411=OF OE , ∴设4OF x =,则114OE x DE DG kx ===,, ∴114==+=+OB OD OE DE x kx , 154==+BD DF x kx ,∴154154114114++==++BD x kx kBO x kx k, 由154114+=+kk k,得247150+-=k k ,解得154k =,23k =-(舍), ∴11416=+=OD x kx x ,15420=+=BD x kx x , ∴232==AD OD x , 在Rt ABD △中,205cos 328∠===BD x ADB AD x , ∴5cos 8α=.18.(2022·金华)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值. 【答案】(1)108︒;(2)是正三角形,理由见解析;(3)15n = 【解析】(1)解:∵正五边形ABCDE . ∴BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒;(2)解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =,∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形; (3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠. ∵2AD AE =,∴272144AOD ∠=⨯︒=︒, ∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 19.(2022·丽水)如图,以AB 为直径的O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD AB ⊥交O 于点D ,连接,AC AD .点A 关于CD 的对称点为E ,直线CE 交O 于点F ,交AH 于点G .(1)求证:CAG AGC ∠=∠;(2)当点E 在AB 上,连接AF 交CD 于点P ,若25EF CE =,求DP CP的值; (3)当点E 在射线AB 上,2AB =,以点A ,C ,O ,F 为顶点的四边形中有一组对边平行时,求AE 的长. 【答案】(1)证明过程见解析 (2)57352或22【解析】 【分析】(1)设CD 与AB 相交于点M ,由O 与AH 相切于点A ,得到90BAG ,由CD AB ⊥,得到90AMC ∠=,进而得到AG CD ∥,由平行线的性质推导得,CAG ACD ,AGC FCD ,最后由点A 关于CD 的对称点为E 得到FCD ACD ∠=∠即可证明.(2)过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,证明FAD ADC ∠=∠得到DP AP =,再证明CPA FPD △≌△得到PF PC =;最后根据KEF NEC △∽△及APN AFK △∽△得到25KE EF EN CE 和512PA ANAF AK ,最后根据平行线分线段成比例求解.(3)分四种情形:如图1中,当∥OC AF 时,如图2中,当∥OC AF 时,如图3中,当AC OF ∥时,如图4中,当AC OF ∥时,分别求解即可.. (1)证明:如图,设CD 与AB 相交于点M ,∵O 与AH 相切于点A ,∴90BAG ,∵CD AB ⊥,∴90AMC ∠=,∴AG CD ∥,∴CAG ACD ,AGC FCD ,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴CAG AGC ∠=∠.(2)解:过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,如下图所示:由同弧所对的圆周角相等可知:FCD FAD ,∵AB 为O 的直径,且CD AB ⊥,由垂径定理可知:AC AD =, ∴ACD ADC ∠=∠,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴FAD FCD ACD ADC ∠=∠=∠=∠,即FAD ADC ∠=∠, ∴DP AP =,由同弧所对的圆周角相等可知:ACP DFP ,且CPA FPD ,∴CPA FPD △≌△, ∴PC PF =,∵FK AB ⊥,AB 与CD 交于点N ,∴90FKE CNE . ∵KEF NEC ,90FKE CNE , ∴KEF NEC △∽△, ∴25KEEF EN CE ,设KE =2x ,EN =5x ,∵点A 关于CD 的对称点为E ,5AN EN x ∴==,10AE AN NE x =+=,12AK AE KE x =+=, 又FK PN ∥,∴APN AFK , ∴551212PA ANx AF AK x . ∵FCD CDA ,∴CF AD ∥, ∴57DPAP AP CP PF AF AP ; (3)解:分类讨论如下:解:如图1中,当∥OC AF 时,连接OC ,OF ,设AGF α∠=,则CAG ACD DCF AFG α∠=∠=∠=∠=,∵∥OC AF ,OCF AFC α∴∠=∠=,OC OA =,3OCA OAC α∴∠=∠=,45OAG ∠=︒,490α∴=︒,22.5α∴=︒,OC OF =,OA OF =,22.5OFC OCF AFC ∴∠=∠-∠=︒,45OFA OAF ∴∠=∠=︒,AF ∴==,∵∥OC AF ,AE AF OE OC∴=∴, 1OA =,2AE ∴=如图2中,当∥OC AF 时,连接OC ,设CD 交AE 点M .设OAC α∠=,∵∥OC AF ,FAC OCA α∴∠=∠=,2COE FAE α∴∠=∠=,AFD D ∠=∠,AGF D ∠=∠,3AGC AFG AEC FAE α∴∠=∠=∠+∠=, 90AGC AEC ∠+∠=︒,490α∴=︒,22.5α∴=︒,245α=︒,COM ∴∆是等腰直角三角形,OC ∴,OM ∴=1AM =,22AE AM ∴==如图3中,当AC OF ∥时,连接OC ,OF ,设AGF α∠=,2ACF ACD DCF α∠=∠+∠=, ∵AC OF ∥,2CFO ACF α∴∠=∠=,4CAO ACO α∴∠=∠=,180AOC OAC ACO ∠+∠+∠=︒, 10180α∴=︒,18α∴=︒,36COE ECO CFO ∴∠=∠-∠=︒, OCE FCO ∴∆∆ 、,2OC CE CF ∴=⋅ 、, ()11CE CE ∴=+ 、,CE AC OE ∴===AE OA OE ∴=-; 如图4中,当AC OF ∥时,连接OC ,OF ,BF .设FAO α∠=,∵AC OF ∥,CAF OFA α∴∠=∠=,2COF BOF α∴∠=∠=,AC AE =,AEC CAE EFB ∴∠=∠=∠, BF BE ∴=,由OCF OBF ∆≅∆,CF BF BE ∴==,E COF ∠=∠,COF CEO ∴∆∆,2OC CE CF ∴=⋅,BE CF ∴==AE AB BE ∴=+=.综上所述,满足条件的AE 的长为22352或。

九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。

九年级数学圆的知识点(填空版)

九年级数学圆的知识点(填空版)

圆的知识点1.圆的定义(1)在一个平面内,线段OA 绕它固定的一一个端点___旋转周,另一个端点___所形成的图形叫做圆. 其固定的端点O 叫做____,线段OA 叫做_____. 以点O 为圆心的圆,记作______. (2)圆心为O ,半径为r 的圆可以看作是所有到______的距离等于_____的点的集合. 性质:(1)图上各到定点到定点(圆心O )的距离都等于定长(半径r ) (2)到定点的距离等于定长的点都在同一个圆上.2.圆的有关概念(1)弦:连接圆上任意两点的_______叫弦,经过圆心的弦叫作________。

(2)弧:圆上任意两点间的_______叫做圆弧,简称弧. 以A ,B 为端点的弧记作_____,读作“圆弧AB ”或“弧AB ”.圆的任意一条直径的两个点把圆分成两条弧,每一条弧都叫做_____.____半圆的弧(用三个点表示,如图ABC )叫做优弧;_______半圆的弧(如图中的AC )叫做劣弧 3) 等圆:能够______的两个圆叫做等圆.容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.(4) 等弧:在同圆或等圆中,能够____________的弧故等弧.3.垂径定理垂径定理:______________________________。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦(不是直径)所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥⇒③CE DE =④BC BD =⑤AC AD = 中任意2个条件推出其他3个结论。

4.圆心角定理 顶点到圆心的角,叫圆心角。

圆心角定理:同圆或等圆中,相等的圆心角所对的______相等,所对的____相等。

专题 四点共圆模型(老师版)

专题 四点共圆模型(老师版)

专题07四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。

相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。

本文主要介绍四点共圆的四种重要模型。

四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。

这也是圆的基本定义,到定点的距离等于定长点的集合。

条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。

例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.【分析】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.【详解】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故答案为:140°.【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.例2.(2022·安徽合肥·校考一模)如图,O 是AB 的中点,点B ,C ,D 到点O 的距离相等,连接AC BD ,.下列结论不一定成立的是()A .12∠=∠B .3=4∠∠C .180ABC ADC ∠+∠=︒D .AC 平分BAD∠【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD ===.即点A 、B 、C 、D 都在圆O 上.A .∵AB AB =,∴12∠=∠,故A 不符合题意;B .∵BC BC =,∴3=4∠∠,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ∠+∠=︒,故C 不符合题意;D .∵BC 和CD 不一定相等,∴BAC ∠和DAC ∠不一定相等,∴AC 不一定平分BAD ∠,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.例3.(2023·陕西·九年级期中)如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为()A .68°B .88°C .90°D .112°【答案】B 【详解】试题分析:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.根据等腰三角形两底角相等求出∠ABC=∠ACB ,再求出∠CBD ,然后根据∠ABD=∠ABC ﹣∠CBD 计算即可得解.如图,∵AB=AC=AD ,∴点B 、C 、D 在以点A 为圆心,以AB 的长为半径的圆上;∵∠CBD=2∠BDC ,∠CAD=2∠CBD ,∠BAC=2∠BDC ,∴∠CAD=2∠BAC ,而∠BAC=44°,∴∠CAD=88°,例4.(2022·绵阳市4模型2、定边对双直角共圆模型同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A 、B 、C 、D 四个点满足90ABD ACD ∠=∠=︒,结论:A 、B 、C 、D 四点共圆,其中AD 为直径。

2020-2021沪科版九年级数学24.2圆的基本性质-知识点+习题同步练习提升 (1)

2020-2021沪科版九年级数学24.2圆的基本性质-知识点+习题同步练习提升 (1)

圆的基本性质记忆导图 ()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧对称、旋转对称对称性:轴对称、中心角形顶点的距离相等定理:三角形外心到三、圆的内接三角形三角形的外接圆、外心圆的作法圆的确定几者之间的关系圆心角的概念距间的关系圆心角、弧、弦、弦心弦心距垂径定理的推论垂径定理垂径分弦点在圆外点在圆内点在圆上点与圆的位置关系半圆、等圆弓形特殊弦:直径普通弦:小于直径的弦弦等弧优弧劣弧或弧圆弧圆、圆心、半径圆的相关概念圆的基本性质 考点1 圆的相关概念1、圆的定义(1)线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆。

(2)圆是到定点的距离等于定长的点的集合。

(3)固定的端点O 叫做圆心。

(4)线段OA 的长为r 叫做半径。

2、圆弧(1)圆上任意两点间的部分叫做圆弧,简称弧。

(2)大于半圆的弧叫做优弧,一般用三个字母表示。

(3)小于半圆的弧叫做劣弧。

(4)在同圆或等圆中,能够互相重合的弧叫做等弧。

3、弦(1)连接圆上任意两点的线段叫做弦。

(2)经过圆心的弦叫做直径。

4、弓形由弦及其所对的弧组成的图形叫做弓形。

5、半圆、等圆(1)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(2)能够重合的两个圆叫做等圆,等圆的半径相等。

考点2 点与圆的位置关系平面上一点P 与⊙O (半径为r )的位置关系有以下三种情况:(1)点P在⊙O上⇔OP=r;(2)点P在⊙O内⇔OP<r;(3)点P在⊙O外⇔OP>r。

考点3垂径分弦1、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

2、推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②弦的垂直平分线过圆心,且平分弦对的两条弧。

③平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦。

④平行弦夹的弧相等。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

中考数学复习专项练习---圆知识点复习及练习(含答案)

中考数学复习专项练习---圆知识点复习及练习(含答案)
37.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 E,连接 AC,BC.
(1)求证:∠A=∠BCD; (2)若 AB=10,CD=6,求 BE 的长.
38.如图,A,P,B,C 是半径为 8 的⊙O 上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC 是等边三角形; (2)求圆心 O 到 BC 的距离 OD. 39.如图,在 Rt△ABC 中,∠ACB=90°,∠A=30°,BC=1,以边 AC 上一点 O 为圆心,OA 为半 径的⊙O 经过点 B. (1)求⊙O 的半径;
A.4 3
B.6 3
C.2 3
D.8
3.如图,△ABC 内接于⊙O,AB 是⊙O 的直径,∠B=30°,CE 平分∠ACB 交⊙O 于 E,交 AB 于 点 D,连接 AE,则 S△ADE:S△CDB 的值等于( )
A.1:
B.1:
C.1:2 D.2:3
4.如图,⊙O 中,C 是优弧 A MB 上的一点,∠AOC=100°,则∠ABC 的度数是( )
(2)⊙O 的半径为 5,tanA= 3 ,求 FD 的长. 4
31.如图,在△ABC 中,BC=AC=6,以 BC 为直径的⊙O 与边 AB 相交于点 D,DE⊥AC,垂足为 点 E. (1)求证:点 D 是 AB 的中点; (2)求点 O 到直线 DE 的距离.
32.如图,已知 AB 是圆 O 的直径,弦 CD⊥AB,垂足 H 在半径 OB 上,AH=5,CD= 4 5 ,点 E
(3)连接 OE 交 BC 于点 F,若 AB= 10 ,求 OE 的长度. 34.如图,在 ABC 中, BA BC , ABC 90 ,以 AB 为直径的半圆 O 交 AC 于点 D,点 E 是 BD 上不与点 B,D 重合的任意一点,连接 AE 交 BD 于点 F,连接 BE 并延长交 AC 于点 G. (1)求证: ADF BDG ;

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下数学专题:圆1.圆的圆的有关概念:(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点为圆心,定长为半径.(2)圆心角:顶点在圆心的角叫做圆心角.(3)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(5)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关性质:(1)圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.3.三角形的心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.(3)三角形的心:和三角形的三边都相切的圆叫做三角形的切圆,切圆的圆心是三角形三条角平分线的交点,叫做三角形的心圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的切圆,切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的 心 。

9.圆接四边形:顶点都在圆上的四边形,叫圆接四边形. 10.圆接四边形对角互补,它的一个外角等于它相邻角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 含 ,② 相切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R -r ,②d = R -r ,③ R -r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

与圆有关的计算圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n°的圆心角所对的弧长为 180rn π ,弧长公式为180r n lπ=n 为圆心角的度数上为圆半径) .2. 圆的面积为πr 2,1°的圆心角所在的扇形面积为 3602r π ,n°的圆心角所在的扇形面积为S= 360n2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径).3.圆柱的侧面积公式:S= 2 πr l (其中为 底面圆 的半径 ,为 圆柱 的高.)4. 圆锥的侧面积公式:S=(其中为 底面 的半径 ,为 母线 的长.)圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A的位置关系是()。

A.C在⊙A 上B.C在⊙A 外C.C在⊙A D.C在⊙A 位置不能确定。

2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为()。

A.16cm或6cm B.3cm或8cm C.3cm D.8cm3.AB是⊙O的弦,∠AOB=80°则弦AB所对的圆周角是()。

A.40°B.140°或40°C.20°D.20°或160°4.O是△ABC的心,∠BOC为130°,则∠A的度数为()。

A.130°B.60°C.70°D.80°5.如图1,⊙O是△ABC的切圆,切点分别是D、E、F,已知∠A = 100°,∠C = 30°,则∠DFE的度数是()。

A.55°B.60°C.65°D.70°6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A、B、C、D处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()。

A.A处B.B处C.C处D.D 处图1 图27.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是()。

A.含B.切C.相交D.外切8.已知半径为R和r的两个圆相外切。

则它的外公切线长为()。

A.R+r B.R2+r2C.R+r D.2Rr9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()。

A.10π B.12π C.15π D.20π10.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是()。

A.3 B.4 C.5 D.611.下列语句中不正确的有()。

①相等的圆心角所对的弧相等②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴④长度相等的两条弧是等弧A .3个 B.2个 C .1个 D.4个12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。

A .7)332(B.8)332( C .7)23( D.8)23(13.如图3,⊿ABC 中,∠C=90°,BC=4,AC=3,⊙O 切于⊿ABC ,则阴影部分面积为( ) A .12-π B.12-2π C .14-4π D.6-π14.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。

A .4-94π B .4-98π C .8-94π D .8-98π15.如图5,圆接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( )。

A .2对 B.3对 C .4对 D.5对图3 图4 图5二、填空题(每小题3分,共30分)1.两圆相切,圆心距为9 cm ,已知其中一圆半径为5 cm ,另一圆半径为_____.2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。

3.边长为6的正三角形的外接圆和切圆的周长分别为_________。

4.同圆的外切正六边形与接正六边形的面积之比为_________。

5.矩形ABCD 中,对角线AC =4,∠ACB =30°,以直线AB 为轴旋转一周得到圆柱的表面积是_________。

6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。

7.圆的半径为4cm ,弓形弧的度数为60°,则弓形的面积为_________。

8.在半径为5cm 的圆有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为_________。

9.如图6,△ABC 接于⊙O ,AB=AC ,∠BOC=100°,MN 是过B 点而垂直于OB 的直线,则∠ABM=________,∠CBN=________;10.如图7,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A ′B ′C ′D ′的位置,则在转过程 中,边CD 扫过的(阴影部分)面积S=_________。

图6 图7三、解答下列各题(第9题11分,其余每小题8分,共75分)1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。

(1)PO平分∠BPD;(2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF。

从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。

2.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD是⊙O的直径,∠D=40°求:∠A O1B、∠ACB和∠CAD的度数。

3.已知:如图20,在△ABC中,∠BAC=120°,AB=AC,BC=43,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。

4.如图,ABCD是⊙O的接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC。

P ABC DO5.如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。

6.如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长。

7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。

8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。

图③图②图①B MP P EE D D BCBCAANMP E D CA9.如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点。

相关文档
最新文档