羧酸及其取代酸
合集下载
羧酸及取代酸

O
O
R C OH+( NH4)2CO3
R C ONH4 + CO2+ H2O
二元羧酸与氨共热脱水,可生成酰亚胺。 O
COOH
+NH3 △
COOH
C NH
C
O
3.脱羧反应
一元羧酸的钠盐与强碱共热,生成比原来羧酸少一 个碳原子的烃。
O
CH3
C
ONa + NaOH
CaO
△
CH4 + Na2CO3
有些低级二元羧酸,由于羧基是吸电子基团,在两 个羧基的相互影响下,受热也容易发生脱羧反应。
脱羧反应是生物体内重要的生物化学反应
C3 C HO脱 OH 羧 C4 酶 + H C2O
4.α-H的卤代反应
C3H COC P O 2l C HCl 2 C HOC O P 2l C H2 C l C HOC P O 2l C H3C l CO
一氯乙酸 二氯乙酸
三氯乙酸
5.还原反应
羧基中的羰基由于p-π共轭效应的结果,羧基很难用催 化氢化或一般的还原剂还原,只有LiAlH4能将其直接还原 成伯醇。LiAlH4是选择性的还原剂,只还原羧基,不还原 碳碳双键。
8.丙烯酸 9. 丁二酸
第二节 羧酸衍生物
羧酸衍生物主要有酰卤、酸酐、酯和酰胺,它们都是 含有酰基的化合物。
一、羧酸衍生物的命名
1.酰卤 根据酰基和卤原子来命名,称为“某酰卤”
O
O
CH3 C Cl
CH3
C Cl
乙酰氯
对甲基苯甲酰氯
2. 酸酐 根据相应的羧酸来命名。
简单酸酐:称为“某酸酐”;
混合酸酐:称为“某某酸酐”;
《羧酸及取代羧酸》课件

取代羧酸中的取代基可能参与还原反应,影响其 化学性质。
取代羧酸可通过取代基的亲核作用与其他分子发 生反应。
Hale Waihona Puke 羧酸的脱羧反应羧酸可脱去羧基,生成相应的 醛或酮化合物。
羧酸的应用
1 食品工业
羧酸可用作食品酸味剂和抗氧化剂。
2 药物工业
羧酸是制备药物的重要原料,可调控药物的性质和稳定性。
3 洗涤品工业
羧酸可用作洗涤剂的表面活性剂,改善洗涤效果。
什么是取代羧酸?
取代羧酸是指羧酸分子中的一个或多个氢被其他原子或基团取代的化合物,具有类似羧酸的化学性质,但性质 和用途也有所不同。
不同的取代基赋予取代羧酸不同的功能,影响其在化学和生物领域的应用。
取代羧酸的物性质
溶解性
取代羧酸的溶解性依赖于取 代基的性质和溶剂的性质。
熔点和沸点
取代羧酸的熔点和沸点受取 代基和羧酸的影响。
分子构型
取代羧酸的立体构型由取代 基的空间位阻决定。
取代羧酸的化学性质
酸性 还原性
亲核性
取代羧酸可通过脱质子反应表现出酸的性质。
羧酸的物理性质
• 羧酸通常呈液体或固体,具有特定的熔点和沸点。 • 具有酸性,可以与碱发生中和反应。 • 一些羧酸具有特殊的气味,例如柠檬酸和醋酸。
羧酸的化学性质
羧酸的酯化反应
羧酸与醇反应生成酯,常用于 有机合成和食品调味中。
羧酸的酰氯化反应
羧酸与酰氯反应生成酰氯,用 作有机合成中的重要中间体。
取代羧酸的命名方式
取代羧酸的命名方式与羧酸类似,根据取代基的种类和位置进行命名。例如,“氨基乙酸”代表乙酸的一个氨基 取代物。
取代羧酸的化学特性
1
取代基的电子效应
取代羧酸可通过取代基的亲核作用与其他分子发 生反应。
Hale Waihona Puke 羧酸的脱羧反应羧酸可脱去羧基,生成相应的 醛或酮化合物。
羧酸的应用
1 食品工业
羧酸可用作食品酸味剂和抗氧化剂。
2 药物工业
羧酸是制备药物的重要原料,可调控药物的性质和稳定性。
3 洗涤品工业
羧酸可用作洗涤剂的表面活性剂,改善洗涤效果。
什么是取代羧酸?
取代羧酸是指羧酸分子中的一个或多个氢被其他原子或基团取代的化合物,具有类似羧酸的化学性质,但性质 和用途也有所不同。
不同的取代基赋予取代羧酸不同的功能,影响其在化学和生物领域的应用。
取代羧酸的物性质
溶解性
取代羧酸的溶解性依赖于取 代基的性质和溶剂的性质。
熔点和沸点
取代羧酸的熔点和沸点受取 代基和羧酸的影响。
分子构型
取代羧酸的立体构型由取代 基的空间位阻决定。
取代羧酸的化学性质
酸性 还原性
亲核性
取代羧酸可通过脱质子反应表现出酸的性质。
羧酸的物理性质
• 羧酸通常呈液体或固体,具有特定的熔点和沸点。 • 具有酸性,可以与碱发生中和反应。 • 一些羧酸具有特殊的气味,例如柠檬酸和醋酸。
羧酸的化学性质
羧酸的酯化反应
羧酸与醇反应生成酯,常用于 有机合成和食品调味中。
羧酸的酰氯化反应
羧酸与酰氯反应生成酰氯,用 作有机合成中的重要中间体。
取代羧酸的命名方式
取代羧酸的命名方式与羧酸类似,根据取代基的种类和位置进行命名。例如,“氨基乙酸”代表乙酸的一个氨基 取代物。
取代羧酸的化学特性
1
取代基的电子效应
第12章 羧酸和取代羧酸

b-酮酸
芳香酸的脱羧反应较脂肪酸容易,尤其是邻、对位 上连有吸电子基,如:
NO 2 O 2N CO2H NO 2
H2O
NO 2 O 2N NO 2 + CO2
六)二元酸的热解反应
二元酸受热后,由于两个羧基的位置不同,而发生不同的 化学反应,有的失水,有的失羧,有的同时失水失羧。
1、乙二酸和丙二酸------脱羧
3、烷基苯氧化:制备苯甲酸及其部分衍生物
CH3 KMnO4 Cl COOH Cl
4、格氏试剂与CO2反应后水解
O RMgX + O=C=O RCOMgX H 3 O+
RCOOH
5、羧酸衍生物水解:酰卤、酸酐、酯、酰胺、腈
O RC L H 2O O L=X, OCR, OR, NH2(R) O RC OH + HL
系统命名法原则与醛相同。
1. 选择含羧基在内的最长碳链为主链
2. 从羧基碳原子开始用阿拉伯数字标明取代基等的位置 3. 按所含碳原子数目称为某酸,取代基及位次写在某酸 之前。
对于简单的脂肪酸也常用 α、β、γ 等希腊字 母表示取代基的位次;羧基永远作为C-1。
CH3 CH3-CH2-CH-CH2-CO2H
15.7 16-19
羧酸酸性的强弱决定于电离后所成的羧酸根负离子 (即共轭碱)的相对稳定性。
诱导效应、共轭效应对酸性的影响
1. 诱导效应的影响
G CH2COOG
酸性增强
CH2COO-
酸性减弱
G CH2COO-
各取代基的吸电子诱导效应的强弱次序:
NO2> CN> F> Cl> Br> I> C≡CH> OCH 3> OH > C6H5> CH=CH2> H
第14章羧酸和取代羧酸

4、酰胺的生成
(三) α-H的卤代反应
❖ 羧基能活化α-H,其致活作用比羰基小得多。α-H卤 代反应较慢,需三卤化磷或红磷等催化。
❖卤原子数目越多, 酸性↑
>
>
(四)脱羧反应
A-CH2COOH
A-CH 3 + CO2↑
❖一元羧酸很难直接脱羧。
❖生物体:在脱羧酶的作用下可直接脱羧 R-COOH 脱羧酶 R-H + CO2↑
(一)丙酮酸
CH3 C COOH O
❖ 丙酮酸是无色液体,沸点165℃,易溶于水、乙醇 和乙醚。
❖ 丙酮酸是体内三大营养物质代谢的中间产物,在体 内可转变为氨基酸,具有重要的生理作用。
❖ 丙酮酸可由乳酸氧化而得,也可还原生成乳酸。
H CH3 C COOH [O] CH3 C COOH
OH
[H]
O
(二)-丁酮酸 又叫乙酰乙酸
极性增大,弱酸性 ❖ 电子云平均化,降低羰基C的正电性,失去典型羰
基性质,不利亲核加成
(一) 酸性
❖ 多数的羧酸是弱酸,pKa约为4-5 ❖酸性:无机强酸 > 羧酸 > 碳酸 > 酚> H2O>醇
RCOONa+HCl→RCOOH+NaCl RCOOH+NaHCO3→RCOONa+CO2↑+H2O 低级和中级羧酸的钾盐、钠盐及铵盐溶于水,故 一些含羧基的的药物制成羧酸盐以增加其在水中 的溶解度,便于做成水剂或注射剂使用。
2,3- 二甲基戊酸 (α,β-二甲基戊酸)
5 -甲基-4 -乙基 己酸 (δ -甲基- γ -乙基 己酸)
2、不饱和羧酸
2 -甲基-3-戊烯酸
2,4 -戊二烯酸
(三) α-H的卤代反应
❖ 羧基能活化α-H,其致活作用比羰基小得多。α-H卤 代反应较慢,需三卤化磷或红磷等催化。
❖卤原子数目越多, 酸性↑
>
>
(四)脱羧反应
A-CH2COOH
A-CH 3 + CO2↑
❖一元羧酸很难直接脱羧。
❖生物体:在脱羧酶的作用下可直接脱羧 R-COOH 脱羧酶 R-H + CO2↑
(一)丙酮酸
CH3 C COOH O
❖ 丙酮酸是无色液体,沸点165℃,易溶于水、乙醇 和乙醚。
❖ 丙酮酸是体内三大营养物质代谢的中间产物,在体 内可转变为氨基酸,具有重要的生理作用。
❖ 丙酮酸可由乳酸氧化而得,也可还原生成乳酸。
H CH3 C COOH [O] CH3 C COOH
OH
[H]
O
(二)-丁酮酸 又叫乙酰乙酸
极性增大,弱酸性 ❖ 电子云平均化,降低羰基C的正电性,失去典型羰
基性质,不利亲核加成
(一) 酸性
❖ 多数的羧酸是弱酸,pKa约为4-5 ❖酸性:无机强酸 > 羧酸 > 碳酸 > 酚> H2O>醇
RCOONa+HCl→RCOOH+NaCl RCOOH+NaHCO3→RCOONa+CO2↑+H2O 低级和中级羧酸的钾盐、钠盐及铵盐溶于水,故 一些含羧基的的药物制成羧酸盐以增加其在水中 的溶解度,便于做成水剂或注射剂使用。
2,3- 二甲基戊酸 (α,β-二甲基戊酸)
5 -甲基-4 -乙基 己酸 (δ -甲基- γ -乙基 己酸)
2、不饱和羧酸
2 -甲基-3-戊烯酸
2,4 -戊二烯酸
羧酸及其取代酸ppt课件

R—COOH + NaOH R—COONa + H2O
例如 CH3COOH + NaOH CH3COONa + H2O
又如 硬脂酸(十八碳酸)和NaOH中和生成硬脂 酸钠(肥皂):
C17H35COOH + NaOH C17H35COONa + H2O
2.酯化反应:羧酸和醇脱去一分子水而成酯。
O
O
酯化
又名醋酸、冰醋酸。
2.苯甲酸
COOH
俗名安息香酸。
3.丁二酸: CH2COOH
CH2COOH 俗名琥珀酸。
4.乙二酸: C O O H COOH
俗名草酸。
5.必需脂肪酸:
不能在体内合成,必须由食物提供的脂肪酸。
CH3(CH2)4CH=12CHCH2CH=9CH(CH2)7COOH
9,12-十八碳二烯酸 (亚油酸) Δ9,12十八碳二烯酸
-丁烯酸
③ 、 醇酸脱水,产物为内酯。
C H2COOH C H2CH2OH
O CH2-C O CH2 -CH2
-羟基丁酸
-丁内脂
+ H2O
-羟基戊酸
相同原子或原子团同在一侧称为顺式(cis); 另一种排列方式是分处两侧称为反式(trans)。 例如:丁烯二酸(HOOC—CH=CH—COOH)
顺-丁烯二酸 Cis-丁烯二酸
(缩水苹果酸)
反-丁烯二酸 trans-丁烯二酸
(延胡索酸)
不是所有的双键化合物都有顺反异构现象。
a-c-a
a-c-b
(1)
CH3—C—OH + H—O—CH3 水解 CH3—C—O—CH 3+ H2O
3.脱羧反应:在脱羧酶的催化下,羧酸失去
羧酸、羧酸衍生物及取代酸

R O C OH R O C OH R O C OH R C O R C O H O H O C R O H H H O H O H O H O H
三、羧酸的物理性质
室温下,十个碳原子以下的饱和一元脂肪羧酸是有 刺激性或腐败气味的液体,十个碳原子以上的脂肪羧酸是 蜡状固体,饱和二元脂肪羧酸和芳香羧酸在室温下是结晶 状固体。 直链饱和一元羧酸的熔点随分子量的增加而呈锯齿 状变化,偶数碳原子的羧酸比相邻两个奇数碳原子的羧酸 熔点都高,这是由于含偶数碳原子的羧酸碳链对称性比含 奇数碳原子羧酸的碳链好,在晶格中排列较紧密,分子间 作用力大,需要较高的温度才能将它们彼此分离,所以熔 点较高。 羧酸在水中的溶解度比相应的醇大。
HOOC
CH 2
COOH
CH 3COOH + CO 2
丁二酸及戊二酸加热至熔点以上不发生脱羧 反应,而是分子内脱水生成稳定的内酐。
O CH2 COOH CH2 COOH
△
CH2 C O CH2 C O
O
+
H 2O
CH2 COOH H2C CH2 COOH
△
CH2 C H2C CH2 C O O
+
O CH3 C Cl
O CH3CH2
丙酰溴
O
C
Br
苯甲酰氯
C
Cl
乙酰氯
酸酐根据相应的羧酸命名。两个相同羧酸形成的酸酐 为简单酸酐,称为“某酸酐”,简称“某酐”;两个不相 同羧酸形成的酸酐为混合酸酐,称为“某酸某酸酐”,简 称“某某酐”;二元羧酸分子内失去一分子水形成的酸酐 为内酐,称为“某二酸酐”。
4.52
(4)当烃基上连有供电子基团时,基团的供电子 能力越强,羧酸的酸性就愈弱。供电子基团的数目增加, 酸性减弱:
三、羧酸的物理性质
室温下,十个碳原子以下的饱和一元脂肪羧酸是有 刺激性或腐败气味的液体,十个碳原子以上的脂肪羧酸是 蜡状固体,饱和二元脂肪羧酸和芳香羧酸在室温下是结晶 状固体。 直链饱和一元羧酸的熔点随分子量的增加而呈锯齿 状变化,偶数碳原子的羧酸比相邻两个奇数碳原子的羧酸 熔点都高,这是由于含偶数碳原子的羧酸碳链对称性比含 奇数碳原子羧酸的碳链好,在晶格中排列较紧密,分子间 作用力大,需要较高的温度才能将它们彼此分离,所以熔 点较高。 羧酸在水中的溶解度比相应的醇大。
HOOC
CH 2
COOH
CH 3COOH + CO 2
丁二酸及戊二酸加热至熔点以上不发生脱羧 反应,而是分子内脱水生成稳定的内酐。
O CH2 COOH CH2 COOH
△
CH2 C O CH2 C O
O
+
H 2O
CH2 COOH H2C CH2 COOH
△
CH2 C H2C CH2 C O O
+
O CH3 C Cl
O CH3CH2
丙酰溴
O
C
Br
苯甲酰氯
C
Cl
乙酰氯
酸酐根据相应的羧酸命名。两个相同羧酸形成的酸酐 为简单酸酐,称为“某酸酐”,简称“某酐”;两个不相 同羧酸形成的酸酐为混合酸酐,称为“某酸某酸酐”,简 称“某某酐”;二元羧酸分子内失去一分子水形成的酸酐 为内酐,称为“某二酸酐”。
4.52
(4)当烃基上连有供电子基团时,基团的供电子 能力越强,羧酸的酸性就愈弱。供电子基团的数目增加, 酸性减弱:
11-羧酸及取代羧酸

第一节
羧酸
一、结构、分类、命名 1. 结构:羧基可看成是由羰基和羟基组合而成。
共平面
p,p-共轭体系
R— —
O H
R—C
羰基和羟基通过 p,p- 共轭构成一个整体, 故羧基不是羰基和羟基的简单加合。
· O · ·
H
O R —C
P-π共轭的结果:
键长平均化;
· · O · ·
H
羰基的正电性— 降低,亲核加成变难;
CH3
COOH
CH3CH2CH2-C-COOH CH-CH3
2-丙基-2-丁烯酸
顺-4-甲基环己基甲酸
20 14 11 8 5 1 CH3(CH2)4 CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3CO2H
5,8,11,14- 二十碳 四烯酸 (花生四烯酸)
>10C的不饱和酸在碳数后加“碳”字
C15H31COOH
乙酸(醋酸)
软脂酸 C17H35COOH
CH3(CH2)7CH=CH(CH2)7COOH
油酸
羧酸的系统命名法与醛相似。对于简单的脂肪 酸也常用 a、b、g 等希腊字母表示取代基的位次; 羧基永远作为C-1。
CH3 CH3-CH2-CH-CH2-CO2H
5 4 g 3 b 2 a 1
O
C-CH3
三、羧酸的化学性质
羧基结构中 p,p- 共轭体系的存在使羧基 的化学性质并不表现为羰基和羟基的简单加 合。
羧 酸 中 的 C=O 不象醛酮中羰基那 样活泼,不能与 HCN 、 NaHSO3 , H2N-G 等 进 行 亲 核 加成。
羧基中 -OH 氧原 子的电子密度有所 降低,从而使 O—H 键之间电子密度降 低,且更靠近氧原 子,以致羧基中的H 能以 H+ 的形式离解 , 表现出明显的酸性。
医用化学-羧酸及其取代酸

COOH
环已基甲酸
COOH
苯甲酸
CH 2CH2CH 2COOH 4—环已基丁酸
CH 2CH 2CH 2COOH 4—苯基丁酸
二、羧酸的化学性质
O || —C—OH
“羰基”和“羟基”的相互影响,表现出羧酸的性质 羰基:不易起亲核加成反应 ?
羧 基
羟基:具有明显的酸性 ?
羧酸中的羰基为什么不易亲核加成反应
CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH —— 5,8,11,14-二十碳四烯酸(花生四烯酸)
第二节 羟基酸
分子中同时含羟基和羧基两种功能基的化合物 一、羟基酸的分类和命名
醇酸
CH3-CH-COOH |
OH 2-羟基丙酸(乳酸)
• 根据羟基类型分为
2、-羟基丁酸 CH3-CHOH-CH2-COOH
• 强吸湿性,糖浆状 • 极易溶于水、乙醇和乙醚,不溶于苯 • 是人体脂肪代谢的中间产物
CH3-C| H-CH2COOH OH
β-羟基丁酸
-2H
+2H
CH3-C|| -CH2COOH
O
β-丁酮酸(乙酰乙酸)
3、酒石酸 HOOC-CHOH-CHOH-COOH
2,3-二羟基丁二酸
• 存在与各种水果中,葡萄中含量最多 • 酒石酸用于配制饮料 • 酒石酸氢钾用于配制发酵粉 • 酒石酸锑钾(吐酒石)用作催吐剂,并曾用于治疗血
吸虫病
4、 柠檬酸
C| H2-COOH HO-C-COOH
(枸橼酸) |
CH2-COOH
β-羟基-β羧基戊二酸
• 广泛分布于植物中,尤以柠檬中含量最多 • 是糖、脂肪等代谢过程中的重要中间产物 • 用作清凉饮料的调味剂 • 柠檬酸钠用作血液的抗凝剂 • 柠檬酸铁铵是常用的补血药,可用于防治缺铁性贫血