探索勾股定理
探索勾股定理(公开课课件)

数学领域中的应用
三角函数
勾股定理与三角函数密切相关, 它可以用于求解三角函数的值, 以及推导三角函数的性质和公式。
解析几何
在解析几何中,勾股定理可以用于 求解直线、圆和曲线的方程,以及 解决几何问题。
数论
勾股定理在数论中也有应用,例如 在证明一些数学定理和猜想时,勾 股定理可以提供重要的思路和方法。
公式表示
勾股定理的公式可以表示为 a² + b² = c²,其中a和b是直角三角形的两条直角 边,c是斜边。
勾股定理的重要性
01
几何学基础
勾股定理是几何学中的一个基础定理,它为解决与直角三角形相关的问
题提供了重要的工具。
02 03
实际应用
勾股定理在现实生活中有着广泛的应用,例如建筑、航海、航空等领域。 通过应用勾股定理,我们可以解决与直角三角形相关的问题,从而更好 地理解和设计各种实际结构。
数学发展史
勾股定理在数学发展史上具有重要地位。它的证明和推广对于数学的发 展起到了重要的推动作用,也激发了人们对数学研究的兴趣和热情。
02 勾股定理的起源与历史
CHAPTER
毕达哥拉斯学派
毕达哥拉斯学派是古希腊时期的一个重要哲学和数学学派, 他们发现了音乐、政治、宇宙和数学之间的联系,并提出了 “万物皆数”的哲学思想。
CHAPTER
勾股定理的逆定理
勾股定理的逆定理
如果一个三角形的三边满足勾股定理 ,则这个三角形是直角三角形。
逆定理的证明
假设三角形ABC的三边满足勾股定理, 即$a^2 + b^2 = c^2$,根据余弦定 理,有$cos C = frac{a^2 + b^2 c^2}{2ab} = 0$,因此角C是直角。
探索勾股定理(19张PPT)数学八年级上册

1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
《探索勾股定理》教案设计有趣的勾股定理数学游戏

【前言】勾股定理是我们学习数学时最基础的知识之一。
作为一名优秀的数学老师,如何让学生在轻松愉快的氛围中掌握勾股定理呢?经过反复研究,我给大家带来了一个有趣的勾股定理数学游戏——《探索勾股定理》教案设计。
【教案设计】一、活动目的1.掌握勾股定理的基本概念和运用方法。
2.培养学生的逻辑思维和数学分析能力。
3.通过实践提高学生的空间想象能力。
二、活动准备1.游戏道具:带刻度的正方形模型和带刻度的平行四边形模型;固定长度的木棒。
2.活动环境:宽敞明亮的活动场地,大屏幕电视。
三、活动过程1.引导学生分工合作,每个小组从模型材料中制作出三角形。
2.学生在制作三角形之后,按照勾股定理的要求,测量并填写三角形每个角度及边长,同时对三角形面积进行计算。
3.根据已知数据(两个边长和一角度),学生利用勾股定理计算三角形第三边的长度。
4.通过比较计算结果和测量结果,验证勾股定理的正确性。
5.游戏深入:每个小组在制作好的三角形上,用木棒连成等腰直角三角形,并在最长的一边上刻度,计算出每个直角边的长度。
6.游戏拓展:将学生为每个直角边涂上颜色,并在屏幕上显示每个小组制作的三角形成品,让学生自己观察,看看是不是每组画出的直角三角形边长总和相等。
四、活动收获1.游戏过程中,学生通过制作三角形、计算量角器的角度、测量三角形的边长和面积,以及应用勾股定理和弦正切公式,增进了对勾股定理的理解。
2.在游戏深入环节中,学生动手制作、参与计算,强化了对勾股定理的记忆和运用能力。
3.在游戏拓展环节中,学生通过观察屏幕上的成品图形,巩固了对勾股定理的理解,并加强了对图形的空间想象力。
【总结】通过这个游戏,学生不仅能够更深刻地理解勾股定理,而且在游戏的实践中提高了自己的数学能力。
教师也可以通过观察学生的实践表现,及时发现和纠正学生的错误思考方式,减少学生的盲点和误区。
让我们一起来探索勾股定理,让数学就在有趣的游戏中学起来!。
探索勾股定理ppt课件

左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾
股
我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?
?
10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进
《探索勾股定理》勾股定理PPT5 图文

无论什么,我仍心怀感激,或许你我只 是在人 生的烟 雨小巷 里,水 榭楼亭 旁一场 花的邂 逅,一 场流水 的情缘 。谢谢 你,曾 经来过 我的世 界,不 惊,不 扰!
如若有缘,总会有那么一个人,即便跋 山涉水 ,历经 千辛万 苦,也 会向你 奔赴而 来;如若 有缘, 总会有 那么一 个人, 即便拨 开万千 人群, 拨开姹 紫嫣红 ,也会 站在光 阴的廊 桥上, 没有早 一步, 没有晚 一步, 只为在 最美的 季节里 ,与你 相遇相 知,与 你在时 光的铜 镜里勾 勒成一 个完 美的圆 。
如图,过 A 点画一直线 AL
使其垂直于 DE, 并交 DE
于 L,交 BC 于 M。通过证
明△BCF≌△BDA,利用三
角形面积与长方形面积的关
系,得到正方形ABFG与矩
形BDLM等积,同理正方形
ACKH与 矩形MLEC也等积,
于是推得
AB2 AC 2 BC 2
第三种类型:以刘徽的“青朱出入图”为代表,证明不需用
时光就是这么不经用,很快自己做了母 亲,我 才深深 的知道 ,这样 的爱, 不带任 何附加 条件, 不因万 物毁灭 而更改 。只想 守护血 浓于水 的旧时 光,即 便峥嵘 岁月将 容颜划 伤,相 信一切 都是最 好的安 排。那 时的时 光无限 温柔, 当清水 载着陈 旧的往 事,站 在时光 这头, 看时光 那头, 一切变 得分明 。执笔 书写, 旧时光 的春去 秋来, 欢喜也 好,忧 伤也好 ,时间 窖藏, 流光曼 卷里所 有的宠 爱,疼 惜,活 色生香 的脑海 存在。
是的,折枝的命运阻挡不了。人世一生 ,不堪 论,年 华将晚 易失去 ,听几 首歌, 描几次 眉,便 老去。 无论天 空怎样 阴霾, 总会有 几缕阳 光,总 会有几 丝暗香 ,温暖 着身心 ,滋养 着心灵 。就让 旧年花 落深掩 岁月, 把心事 写就在 素笺, 红尘一 梦云烟 过,把 眉间清 愁交付 给流年 散去的 烟山寒 色,当 冰雪消 融,自 然春暖 花开, 拈一朵 花浅笑 嫣然。
《探索勾股定理》 说课稿

《探索勾股定理》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《探索勾股定理》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“勾股定理”是初中数学中的重要定理之一,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关知识的基础上进行的,通过对勾股定理的探索和证明,不仅可以加深学生对直角三角形的认识,还能为后续学习解直角三角形等内容奠定基础。
本节课的教材内容注重引导学生通过观察、猜想、验证等活动,自主探究勾股定理的形成过程,培养学生的数学思维能力和创新意识。
二、学情分析在知识方面,学生已经掌握了直角三角形的基本性质,如直角三角形的两个锐角互余等,但对于直角三角形三边之间的数量关系还没有深入的了解。
在能力方面,学生具备一定的观察、分析和归纳能力,但在逻辑推理和证明方面还需要进一步的培养和提高。
在心理特点方面,初中生具有较强的好奇心和求知欲,喜欢动手操作和探索新知识,但在学习过程中可能会出现注意力不集中、缺乏耐心等问题。
三、教学目标1、知识与技能目标(1)理解勾股定理的内容,会用勾股定理进行简单的计算。
(2)经历勾股定理的探索过程,培养学生的观察、猜想、归纳和验证能力。
2、过程与方法目标(1)通过观察、猜想、验证等活动,让学生体会从特殊到一般的数学思想方法。
(2)在探索勾股定理的过程中,培养学生的合作交流意识和创新精神。
3、情感态度与价值观目标(1)通过对勾股定理历史的了解,激发学生的学习兴趣和民族自豪感。
(2)在探究活动中,让学生体验成功的喜悦,增强学习数学的信心。
四、教学重难点勾股定理的内容及其应用。
2、教学难点勾股定理的证明。
五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用以下教学方法:(1)情境教学法:通过创设生动有趣的问题情境,激发学生的学习兴趣和探究欲望。
(2)启发式教学法:在教学过程中,通过设置问题,引导学生思考、分析和解决问题,培养学生的思维能力。
《探索勾股定理》

我观察,我猜想
观察所得到的数据,你有什么发现? SA+SB=SC
B 4b c5
a3 A
32+42=52 a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
我实践,我验证
命题:如果直角三角形的两直角 边长分别为a、b,斜边长为c,那 么 a2+b2=c2.
c a
b
我实践,我验证 方法一来自证明: S= a b2
解:由于三角形的两边为3、4 所以它的第三边c的平方等于25 即:c=5
我会用,我挑战 3.一个长8 米,宽6 米的矩形草地,需在相对 角的顶点间加一条小路,则小路的长为 ( )
A.8 米 B.9 米 C.10米 D.14米
别踩我,我怕疼!
6m
8m
我自信,我挑战
4、某楼房三楼失火,消防队员赶来救火, 楼梯已被火封住上不去,了解到着火点 距地面10米消防队员取来9米长的云梯。 已知梯子的底部到墙基的水平距离为4米, 到地面的高度为2米,问消防队员能否进 入三楼灭火?
在西方,相传二千多年前,古希腊数学家毕达哥拉斯发现勾股定理后高兴 异常,命令他的学生宰了一百头牛来庆祝这个伟大的发现,因此勾股定理 又叫做“百牛定理”. 因此在国外人们通常称勾股定理为毕达哥拉斯定 理.
毕达哥拉斯(Pythagoras 公元前582年一前497年 )是古希腊数学家,比 商高晚出生五百多年。
b S=S小正方形 S4直角三角形
c2 4 1 ab
a c
2
a b2 c2 4 1 ab
2b c
a2 b2 c2
a
a
b c
c a
b
我实践,我验证 方法二
a bc
2023探索《勾股定理》说课稿范文(精选5篇)

2023探索《勾股定理》说课稿范文(精选5篇)2023探索《勾股定理》说课稿范文(精选5篇)1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
c
Rt△ABC,∠C=90° a2+b2=c2
B
C
a
义务教育教科书 八年级上册
A
回顾思考: 1.怎样探索获得勾股定理的? 2.有哪些方法验证勾股定理?
C
B
思考拓展
直角三角形两直角边的平方和等于斜边的平方。 A
a 1 2 1 2
b 1 2 2 3
c c2=2 c2=8 c2=5 c2=13
c 2 1 2 c 1
A
2
c
1 c2
1 2c
C 1 B
1
2
2 c c 1 c 2
1 c 2 1
思考:你有哪些方法知道正方形的面积为5?
如何解决
3.应用方法
问题1.(4)若a=2,b=3.你能求c2吗?
c 2 3 3c 2 2 c 3 3 2 c
A
3
3
2
c c 3
c
2 3 2
c c
3
2
C 2 B
思考:你有哪些方法知道正方形的面积为13?
义务教育教科书 八年级上册
A
C
B
胡赵云
浙江省衢州学院附属学校 浙江省衢州学院教师教育学院
发现问题
特殊△:等腰△ , 等边△
A
A
B
C
B
C
特殊 △ :直角三角形----Rt△ABC
你知道什么?
边与边之间的关系呢?
A
C
B
提出问题
问题:Rt△ABC中,∠C=90°,问边a,b,c之间有何关系?
A
b
C
c a
A
1
C
cD 1
B
2
c
C
1
B
如何解决
1.特殊简单入手
问题1.已知Rt△ABC,∠C=90° 2=2 c (1)若 a=b=1,你能写出含c的等式吗? (2)若 a=b=2,你能写出含c的等式吗? c2=8 (3)若 a=1, b=2呢?
思考: (1)(2)的条件有什么共同点?(3)的条件与(1)(2)有什么区别? (1)(2)的结果有什么共同点?c2=2,c2=8能让我们想起什么?
如何解决
2.分析方法
问题: 如何验证以c为边长的正方形的面积是否为2 ?
方法2.用网格1帮助
A
A
1
C
c 1
B
1
C
c 1
B
如何解决
2.分析方法
你能用上述方法验证问题(2)的结论吗?
A
2
C
c 2 B
思考:你有哪些方法知道正方形的面积为8?
如何解决
3.应用方法
问题:你能用上述方法帮助解决问题(3)吗?
B
如何 研究?
如何解决
1.特殊入手 ------简单的
问题1.已知Rt△ABC,∠C=90° 2=2 c (1)若 a=b=1,你能写出含c的等式吗? (2)若 a=b=2,你能写出含c的等式吗? c2=8
A A
1
C
cD 1
B
2
c
D
C
2
B
如何解决
1.特殊简单入手
问题1.已知Rt△ABC,∠C=90° 2=2 c (1)若 a=b=1,你能写出含c的等式吗? (2)若 a=b=2,你能写出含c的等式吗? c2=8 (3)若 a=1, b=2呢? A
144
81
x
y
169
100
z
121
归纳应用
2.应用: (2)求下列三角形未知边的长.
12
5
?
17
?
8
?
20
16
拓展视野
拓展1: 验证方法(古今中外400多种,上至总统下至数学爱好者)
赵爽 (公元3世纪)
朱青出入法
梯形法
拓展视野
拓展2: 文化价值
数学家大会
与外星人沟通
2 2 2 a + b =c
c
b
B
a
C
你有问题吗? 你想到什么问题? 你能发现什么问题?
归纳应用
勾股定理——毕达哥拉斯定理
直角三角形两直角边的平方和等于斜边的平方。
A
b
c
Rt△ABC,∠C=90° a2+b2=c2
有什么用?
C
a
B
已知Rt △的两边,求第三边。
归纳应用
2.应用: (1)求下列图形中未知数x,y,z的值. 144
如何解决
4. 观察归纳
问题2. 梳理上述四个问题的边长,并思考a,b,c之间 有什么联系?
a 1 2 1 2
b 1 2 2 3
c c2=2 c2=8 c2=5 c2=13
2 2 2 a +b =c
如何解决
5.验证结论
问题3.(1)在网格中能验证a2+b2=c2吗?当 a=2,b=3时.
A b2 3
c
c2
A
4
c
3
22 B C a
C
B
(2)在Rt△ABC中,∠C=90°,a=3,b=4,问c=?
如何解决
6.结论一般化
网格有局限性,对于非整数边长的怎么办? 问题4. Rt△ABC中,∠C=90°,你能说明 a2+b2=c2正确吗?
A
A
b
C
c
b2 B
a
C a2 B
bc a
归纳应用
1.归纳:勾股定理——毕达哥拉斯定理 直角三角形两直角边的平方和等于斜边的平方。