重点小学图形面积求法专题训练

合集下载

平面图形面积练习题

平面图形面积练习题

平面图形面积练习题一、矩形1. 已知一个矩形的长为7米,宽为5米,求其面积。

答:这个矩形的面积可以通过长乘以宽来计算,即7米 × 5米 = 35平方米。

二、正方形2. 一个正方形的边长为9米,求其面积。

答:由于正方形的四条边长度相等,可以直接将边长乘以边长来计算面积,即9米 × 9米 = 81平方米。

三、三角形3. 已知一个三角形的底边长为12米,高为8米,求其面积。

答:三角形的面积可以通过底边乘以高再除以2来计算,即(12米 ×8米) ÷ 2 = 48平方米。

四、梯形4. 已知一个梯形的上底长为6米,下底长为10米,高为4米,求其面积。

答:梯形的面积可以通过上底与下底的和再乘以高再除以2来计算,即[(6米 + 10米) × 4米] ÷ 2 = 32平方米。

五、圆形5. 已知一个圆形的半径为5米,求其面积。

答:圆形的面积可以通过半径的平方再乘以π(取近似值3.14)来计算,即5米 × 5米× 3.14 ≈ 78.5平方米。

六、椭圆6. 已知一个椭圆的长轴长为6米,短轴长为4米,求其面积。

答:椭圆的面积可以通过长轴与短轴的乘积再乘以π来计算,即(6米 × 4米) × 3.14 ≈ 75.36平方米。

总结:在计算平面图形的面积时,可以根据图形的不同形状应用相应的公式来求解。

对于矩形和正方形,可以直接进行边长的计算;对于三角形和梯形,需要使用底边和高来计算;对于圆形和椭圆,需要使用半径或者长轴、短轴来计算。

在计算过程中,需要注意单位的统一,并且按照指定的格式进行结果的展示。

以上就是平面图形面积的练习题。

通过这些练习,我们可以加深对不同图形面积计算方法的理解,提升解决实际问题的能力。

希望这些练习题对你有所帮助!。

图形面积巧计算(附解题思路与参考答案)

图形面积巧计算(附解题思路与参考答案)

图形面积巧计算专项练习 (附解题思路和参考答案)教学内容:巧算图形面积。

教学对象:三、四年级学生。

教学重点:正方形、长方形面积的计算。

教学难点:重叠图形面积的计算。

教学过程: 一 复习教学(一)点学生回答:1.什么叫面积?2.正方形、长方形的公式、3.遇到较复杂的组合图形后又该如何计算?(二)投影出示下列内容,引导学生熟读记牢。

1面积:面积指的是物体所占平面的大小。

2 长方形的面积=长×宽,长方形的面积÷长=宽,长方形的面积÷宽=长。

正方形的面积=边长×边长,正方形的面积÷边长=边长。

3 求复杂图形的面积,需要敏锐的观察力和灵活的思维,运用添加辅助线、割补、转化等方法解答。

二新课教学(一)例题1 在一张长9米,宽7米的长方形铁板上,切割出一个面积最大的正方形,这个正方形铁板的面积是多少平方米?三 巩固练习11. 明明把一张长12厘米,宽8厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?请根据例题写出解题思路:请列式计算9米 7 米 解题思路:要使切割出的正方形铁板面积最大就要使它的边长最长(如图),那么只能选原来的长方形的宽为边长,即正方形的边长为7米。

解:7×7=49(平方米) 答:这个正方形铁板的面积是49平方米。

2 妈妈把一块长2米,宽6分米的长方形布料裁成一个面积最大的正方形,这个正方形的面积是多少?解题思路: 1. 统一单位:2米=20分米。

2. 再根据正方形的面积公式“边长×边长”可求出基面积。

解:3 将以张长10米,宽8米的长方形铁板切割成一个面积最大的正方形,这个正方形的面积是多少平方米?剩下的部分是什么形状?面积是多少?1.正方形的面积:答:这个正方形的面积是 平方米。

2.剩下的面积:答;剩下的部分是 ,面积是 平方米。

(二)例题2 求下面图形的面积。

(单位:厘米)解题思路:不是规则的长方形要把原图进行割补,使其变成规则的图形解答。

小学四年级图形的面积问题

小学四年级图形的面积问题

小学四年级图形的面积问题图形的面积问题【例题1】人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

思考:还有其它的方法吗?练习1:1.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2.一块长方形地,长是80米,宽是45米。

如果把宽增加5米,要使面积不变,长应减少多少米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【思路导航】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

所以,这个长方形原来的面积是12×9=108平方米。

,警示:画图理解更深刻!!练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。

求这个长方形原来的面积。

【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【思路导航】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

练习3:1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?3.用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着墙。

三年级巧求面积题型

三年级巧求面积题型

三年级巧求面积题型
以下是三年级巧求面积的题型:
1. 长方形面积:已知长方形的长为5厘米,宽为3厘米,求它的面积。

2. 正方形面积:已知正方形的边长为6厘米,求它的面积。

3. 三角形面积:已知三角形的底边长为8厘米,高为4厘米,求它的面积。

4. 圆形面积:已知一个圆的半径为5厘米,求它的面积(取π约等于3.14)。

5. 不规则图形面积:已知一个不规则图形可以拆分为两个长方形,其中一个长方形的长为8厘米,宽为4厘米,另一个长方形的长为6厘米,宽为3厘米。

求整个不规则图形的面积。

以上是三年级巧求面积的一些题型,根据孩子的能力和课程要求,可以适当调整难易程度或者增加更多的题目。

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

小学数学几何 直线型面积的计算 完整版题型训练+详细答案

直线形面积的计算例题讲解:板块一:基础题型:1.如图,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?解析:四边形ABCD的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。

CF=36×2÷8=9(厘米),FB=15-9=6(厘米),AE=36×2÷12=6(厘米),EB=8-6=2(厘米)。

阴影三角形DEF的面积是36-2×6÷2=30(平方厘米)2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?解析:40×15÷30=20(平方米)3.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?解析:三角形ADC的面积是3×3=9(平方厘米),三角形ABC的面积是3×9=27(平方厘米)4.如图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?解析:三角形BAE的面积是36÷3×2=24(平方厘米),三角形BDE的面积24÷3×2=16(平方厘米)5.如图所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?解析:(1)三角形AED的面积是20×3=60(平方厘米)(2)三角形DEC的面积是20+60=80(平方厘米),三角形DEC的面积是平行四边形DECF 的面积的一半,也是平行四边形ABCD的面积的一半,所以平行四边形DECF的面积是80×2=160(平方厘米)6.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?解析:根据一半模型可知,三角形AOD的面积和三角形BOC的面积是平行四边形ABCD 的面积的一半,所以三角形BOC的面积是36÷2-8=107.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?解析:链接BD ,可知三角形ABD 的面积和三角形BDC 都是96÷2=48(平方厘米),三角形ABE 的面积是48×32=32(平方厘米)。

五年级奥数-面积计算专题

五年级奥数-面积计算专题

第9讲面积计算一、知识要点对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。

有些图形可以根据“容斥问题“的原理来解答。

在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

二、精讲精练【例题1】如图所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。

把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)答:阴影部分的面积是107平方厘米。

练习1:1.如图所示,求阴影部分的面积(单位:厘米)2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。

求红蓝两张三角形纸片面积之和是多少?【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。

如图所示。

3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。

把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

重点小学小学六年级 阴影部分面积 专题复习 典型例题(含答案)

精心整理阴影部分面积专题 例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米) 解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r ,因为正方形的面积为7平方厘米,所以=7,7-×例3.解:用四个圆圆的面积, π=0.86解:同上,正方形面积减去圆π()=16- 例5.解:这是一个用最常用的方法解我们把阴影部分的每一个小部分称为“,是用两个圆减π(平方厘米倍。

解:两个空白部分面积之差就是两圆面积之差(全加上阴影平方例7.求阴影部分的面积。

(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5 所以阴影面积为:π例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。

(单位:厘米)解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米例11.求。

(π×解:三个部分拼成一个半圆平方例13.解:剪开移到凑成正方形的一半.所以:8×8÷2=32梯形面积减去圆面(4+10)×π厘例15.分析:此题比上面的题有一定难度,这是"叶形"的一个半.解:设三角形的直角边长为r,则=12,=6圆面积为:π÷2=3π。

小学五年级数学图形求面积题

小学五年级数学图形求面积题实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。

一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12平方厘米。

解:S△ABE=S△ADF=S四边形AECF=12(平方厘米)在△ABE中,因为AB=6厘米,所以BE=4厘米,同理DF=4厘米,因此CE=CF=2厘米,∴△ECF的面积为2×2÷2=2(平方厘米)。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法1.>>>相加法<<<这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积2.>>>相减法<<<这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

平面图形的周长与面积图形计算(专项训练)-小学数学六年级下册人教版

平面图形的周长与面积图形计算(专项训练)-小学数学六年级下册人教版一、图形计算1.求阴影部分面积。

(单位:cm)2.求涂色部分的面积。

3.看图计算:求下图阴影部分的面积。

4.计算下边图形阴影部分的面积(单位:厘米)。

5.如图正方形的面积是40平方厘米,求阴影部分的面积。

6.求下图中阴影部分的面积。

(单位:厘米)7.求如图中阴影部分的周长。

(单位:厘米)8.求下图阴影部分的面积和周长。

9.计算下面黑色部分的面积。

10.求下图阴影部分的面积(单位:厘米)。

11.计算涂色部分的面积。

12.求下图中阴影部分的面积。

13.求阴影部分的面积。

(单位:厘米)14.求阴影部分的面积。

(单位:厘米)15.计算下图的周长和面积(单位:m)16.求阴影部分的面积。

17.计算下图的面积(单位:dm)。

18.求下图中阴影部分的面积。

19.计算下图中阴影部分的面积。

20.求阴影部分的周长和面积。

(单位:厘米)21.如果下图中的正方形的边长是4cm,求阴影部分的面积。

22.求阴影部分面积。

参考答案:1.9.42cm2【解析】【分析】根据图形的特点,可以通过平移转化为半径是2cm的圆面积减去直径是2cm的圆的面积,根据圆的面积公式:S=πr2,把数据代入公式解答。

【详解】3.14×22-3.14×(2÷2)2=3.14×4-3.14×1=12.56-3.14=9.42(cm2)2.15.44cm2【解析】【分析】根据梯形的面积公式:(上底+下底)×高÷2,上底为4cm,下底为10cm,高为4cm,代入求出梯形的面积,再利用圆的面积公式:S=2πr,求出14个圆的面积,用梯形的面积减去14个圆的面积即是阴影部分的面积。

【详解】(4+10)×4÷2-14×3.14×42=14×4÷2-14×16×3.14=56÷2-4×3.14=28-12.56=15.44(cm2)3.20.3m2【解析】【分析】根据正方形的边长计算出小圆的直径,进而算出半径,用正方形面积减去5个小圆的面积即可得到阴影部分的面积。

小学专项训练4-平面图形面积计算

平面图形面积计算课程目标:1.通过专题复习,加强对图形周长和面积计算的灵活运用。

2.培养学生观察能力,根据图形特点通过平移、割补将不规则图形转换为规则图形;熟练掌握从整体图形减局部法求不规则图形面积。

3.等积等比求面积,多角度审图,培养学生几何平面想象力。

4.等量代换、方程、整体法等数学思想与几何平面综合,激发学生思维,提升分析能力。

知识点一:巧算周长【例1】图中多边形的周长是______厘米。

【变式训练】1.求下图的周长(单位:厘米)2.如图,求阴影部分的周长。

3.如图,等边△ABC的边长是5,D,E分别是边AB,AC上的点,将△ADE沿直线DE折叠,点A落在处,且点在△ABC外部,则阴影图形的周长等于______【例2】如图,大半圆的直径6厘米,两个小半圆的周长之和是______;大半圆的周长______。

【变式训练】1.小华要从甲地到乙地,现有三种线路可供选择,小华走哪条路线最快到达乙地______(①;②;③;①②③都一样)2.如图,大圆的周长与两个小圆的周长和比较,大圆的周长______小圆周长。

3.如图是三个半圆,求阴影部分的周长.知识点二:整体法求阴影面积【例3】如图:一个三角形的三个顶点分别为三个半径为3厘米的圆的圆心,则图中阴影部分的面积是______【变式训练】1.下面四个圆的直径都是10cm,阴影部分的面积是______2.三个等圆周长均为18.84cm,则阴影部分面积为______平方厘米。

3.如图中三个圆的半径都是1厘米,三角形的三个顶点分别位于三个圆的圆心,三角形的两条直角边分别为4厘米、3厘米,阴影部分的面积和是多少平方厘米.(π取3.14)知识点三:割补法求阴影面积。

【例4】求下列图形阴影部分的面积.(单位:厘米)【变式训练】1.如图,OA、OB分别是小半圆的直径,且OA=OB=6厘米,角BOA为直角,阴影部分的面积是______平方厘米.2.图中空白部分占正方形面积的______分之______.3.如图,求阴影部分的面积是______.知识点四:整体减部分【例5】图中阴影部分的面积是______平方厘米.【变式训练】1.如图,在4×7的方格纸上画有如阴影所示的“9”字,阴影边缘是线段或圆弧,则阴影面积占纸板面积的______.2.如图中,两个正方形的边长分别为6cm和4cm,求阴影部分的面积.3.如图,在长方形ABCD中,M是CD边中点,DN是以点A为圆心的一段弧,KN是以点B为圆心的一段弧,AN=3厘米,BN=2厘米.则图中阴影部分的面积是多少平方厘米.(π取3.14)【例6】如图所示,两个相同的直角三角形部分叠在一起.求阴影部分的面积.(单位:厘米)【变式训练】1.如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是多少平方厘米?2.两个相同的直角梯形形重叠,求阴影部分面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学图形面积求法专题训练
很多小学孩子在学习图形面积,尤其是组合图形面积求法时候,容易产生问题。

很多问题又无法解决,学习这部分的经验给予分享,希望能够对您有所帮助。

•基本的面积公式和能够对图形进行拆分
•识图技巧和方法
方法/步骤
1.1
首先,审题,根据题意让孩子能够自己画出图形;如果题目中有了图形,就让孩子先看看都有什么图形组成的,可以有几种分法。

主要是锻炼孩子的图形识别能力,不着急马上根据数据做题的。

如下图的题目:
2.2
例如上面的图形,孩子识别图形,很容易发现有正方形、三角形、四边形、多边形等。

可以进一步问问孩子每种图形有几个。

孩子一定可以数出来的。

接下来才让孩子考虑面积求法问题,面积求法的思路通常是两个:
1、可以直接利用面积公式的直接求;
2、不能直接利用公式的,可以考虑间接求。

要么是分割、要么是补充,也就是
做加法还是做减法去求。

一定让孩子有充足的思考时间。

3.3


小学面积计算方法训练一求阴影部分的面积(单位:厘米)
小学面积计算方法训练二
1、在一个正方形水池的周围,环绕着一条宽2米的小路,小路的面积是80平方
米,正方形水池的面积是多少平方米?
2、如图,一个长方形被一线段分成三角形和梯形两部分,它
们的面积差是28平方厘米,梯形的上底长是多少厘米?
3、在三角形ABC中,BD=DF=FC,BE=EA。

若三角形EDF的
面积是2,则三角形ABC的面积是多少?
4、两个相同的直角三角形如图所示(单位:厘米)
重叠在一起,求阴影部分的面积?
5、在图中,平行四边形ABCD的边BC长10厘米,直角
三角形ECB的直角边EC长8厘米。

已知阴影部分的总面积比三角形EFG的面积大10平方厘米,求平行四边形ABCD面积。

6、在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形
AFB比三角形EFD的面积大18平方厘米。

求ED长。

7、长方形ABCD的长为8厘米,宽为6厘米,E,F
分别为所在边的中点,求阴影部分的面积?
8、右图所示的等腰直角三角形中,剪去一个三角形
后,剩下的部分是一个直角梯形(阴影部分)。

已知梯形的面积为36平方厘米,上底为3厘米,求下底和高?
小学面积计算方法训练三
1、图中长方形AEFD的面积是18平方厘米,BE长3厘
米,求CD的长。

2、如图,BD、DE、EC的长分别是2厘米,4厘
米,2厘米,F是线段AE的中点,三角形ABC 的高为4厘米,求三角形DEF的面积。

3、已知BD长是2厘米,DC长是3厘米,E是AD的
中点,如果三角形ABD的面积是5平方厘米,那么三角形DEC面积是多少?
4、下图中,有四条线段的长度已知,还有两个角是直角,那么四边形ABCD(阴
影部分)的面积是多少?
5、右图中三角形ABC。

D是AC的中点,E是AB
的三等分点,三角形ABC的面积是三角形AED的几倍?
6、将右图中的三角形ABC各条边都延长一倍至A′,
B′,C′,连结这些点得到一新的三角形A′B′C′,若三角形ABC的面积是1,求三角形A′B′C′的面积。

7、直角梯形ABCD的上底是10厘米,下底是14厘米,
高是5厘米。

又三角形ABF,三角形BCE和四边形BEDF的面积相等,求三角形DEF的面积。

参考答案:
训练一
1.11
2.96
3.38
4. 5.5
5.72
6.30
7.17
8.12
训练二
1.64
2.4
3.12
4.17
5.50
6.2
7.12
8. 6.9
训练三
1.6
2.4
3. 3.75
4.48
5.6
6.7
7.3。

相关文档
最新文档