自控原理实验一(一、二阶系统的电子模拟及时域响应的动态测试)
北航自动控制系统原理实验资料报告材料1-4合集

自动控制原理实验报告实验一二阶系统的电子模拟及时域响应的动态测试实验二频率响应测试实验三控制系统串联校正实验四控制系统数字仿真:学号:单位:仪器科学与光电工程学院日期:2013年12月27日实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、实验容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1.一阶系统:系统传递函数为:模拟运算电路如图1- 1所示:图1- 1由图1-1得在实验当中始终取R2= R1,则K=1,T= R2C取不同的时间常数T分别为:0.25、0.5、12.二阶系统:其传递函数为:令=1弧度/秒,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取R2C1=1 ,R3C2 =1,则及ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1四、实验步骤1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路;2. 将系统输入端与D/A1相连,将系统输出端与A/D1相;3. 检查线路正确后,模拟机可通电;4. 双击桌面的“自控原理实验”图标后进入实验软件系统。
5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。
6. 单击“确定”,进行实验。
完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。
五、实验设备HHMN-1电子模拟机一台、PC机一台、数字式万用表一块六、实验数据T 0.25 0.5 1R2 250K 500K 1MC 1μF 1μF 1μFTs理论0.75s 1.5s 3.0sTs实测0.763s 1.543s 3.072sTs误差 1.73% 2.87% 2.40%响应图形图1 图2 图3图2图3ζ0.25 0.5 1 R4 2M 1M 500K C2 1μF 1μF 1μF σ%理论33.08% 16.48% 0 σ%实测33.89% 16.79% 0 σ%误差 2.45% 1.88% 0 Ts理论8.643s 5.307s 4.724s Ts实测8.752s 5.398s 4.808s Ts误差 1.26% 1.71% 1.78% 响应曲线图4 图5 图6图5图6七、误差分析1. 电阻的标称值和实际值有误差。
自动控制原理实验报告五个实验

自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。
自动控制实验报告1

H a r b i n I n s t i t u t e o f T e c h n o l o g y自动控制理论实验报告实验一典型环节的时域响应院系:电气学院班级:0806152学号:1080610402姓名:吴学金哈尔滨工业大学实验一 典型环节的时域响应一、 实验目的1.掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。
2.熟悉各种典型环节的阶跃响应曲线。
3.了解各项参数变化对典型环节动态特性的影响。
二、 实验设备PC 机一台,TD-ACC+教学实验系统一套。
三、 实验步骤1、按图1-2比例环节的模拟电路图将线接好。
检查无误后开启设备电源。
注:图中运算放大器的正相输入端已经对地接了100k 电阻。
不需再接。
2、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”接好。
将信号形式开关设为“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为1V ,周期为10s 左右。
3、将方波信号加至比例环节的输入端R(t), 用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入R(t)端和输出C(t)端。
记录实验波形及结果。
4、用同样的方法分别得出积分环节、比例积分环节、惯性环节对阶跃信号的实际响应曲线。
5、再将各环节实验数据改为如下:比例环节:;,k R k R 20020010== 积分环节:;,u C k R 22000==比例环节:;,,u C k R k R 220010010=== 惯性环节:。
,u C k R R 220010=== 用同样的步骤方法重复一遍。
四、 实验原理、内容、记录曲线及分析下面列出了各典型环节的结构框图、传递函数、阶跃响应、模拟电路、记录曲线及理论分析。
1.比例环节 (1) 结构框图:图1-1 比例环节的结构框图(2) 传递函数:K S R S C =)()( KR(S)C(S)(3) 阶跃响应:C(t = K ( t ≥0 ) 其中K = R 1 / R 0 (4) 模拟电路:图1-2 比例环节的模拟电路图(5)记录曲线:(6)k R k R 20020010==,时的记录曲线:_R0=200kR1=100k_ 10K10KC(t)反相器 比例环节 R(t)(7)曲线分析:比例放大倍数K 与1R 的阻值成正比。
自动控制原理实验一

自动控制理论实验报告姓名学号班级同组人实验一典型系统的阶跃响应分析一、实验目的1. 熟悉一阶系统、二阶系统的阶跃响应特性及模拟电路;2. 测量一阶系统、二阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响;3. 掌握系统动态性能的测试方法。
二、实验内容1. 设计并搭建一阶系统、二阶系统的模拟电路;2. 观测一阶系统的阶跃响应,并研究参数变化对其输出响应的影响;σ、3. 观测二阶系统的阻尼比0<ξ<1时的单位阶跃响应曲线;并求取系统的超调量%调节时间t s(Δ= ±0.05);并研究参数变化对其输出响应的影响。
三、实验结果(一)一阶系统阶跃响应研究1. 一阶系统模拟电路如图1-1所示,推导其传递函数G(s)=K/(Ts+1),其中R0=200K。
图1-1 一阶系统模拟电路2. 将阶跃信号发生器的输出端接至系统的输入端。
3. 若K=1、T=1s时,取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1)。
当T=1,光标为起点和终值:光标为起点和0.95的终值:传递函数为:(R2/R1)/(R2CS+1)4 若K=1、T=0.1s时,重复上述步骤(R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1))。
当T=0.1时,光标为起点和终值;光标为起点和0.95终值:6. 保存实验过程中的波形,记录相关的实验数据.,参数变化对系统动态特性的影响分析。
传递函数为:(R2/R1)/(R2CS+1), t=3T ,当T 减小需要达到稳定的时间也会减少,(二)二阶系统阶跃响应研究二阶系统模拟电路如图1-2所示,Rx 阻值可调范围为0~470K 。
图1-2 二阶系统模拟电路传递函数为1. n ω值一定(取10n ω=)时:1.1 当ξ=0.2时,各元件取值:C=1uF ,R=100K , R X =250K (实际操作时可用200k+51k=251k 代替),理论计算系统的%σ,t s (Δ= ±0.05),记录此时系统的阶跃响应曲线(阶跃信号的幅值自定),在曲线上求取系统的%σ,t s (Δ= ±0.05),并与理论值进行比较。
自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验指导书(五个实验)

自动控制原理实验指导书电力学院自动控制原理实验室二○○八年三月目录实验一典型环节的电路模拟与软件仿真 (2)实验二线性定常系统的瞬态响应 (6)实验三线性系统稳态误差的研究 (8)实验四系统频率特性的测量 (11)实验五线性定常系统的串联校正 (13)附: THBDC-1控制理论.计算机控制技术实验平台简介 (16)实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用方法。
2.熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。
3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验设备1.THBDC-1型控制理论·计算机控制技术实验平台2.PC机1台(含上位机软件) USB数据采集卡37针通信线1根16芯数据排线USB接口线3.双踪慢扫描示波器1台(可选)4.万用表1只三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。
四、实验原理自控系统是由比例、积分、微分、惯性等典型环节按一定的关系连接而成。
熟悉这些环节对阶跃输入的响应,对分析线性系统将是十分有益的。
在附录中介绍了典型环节的传递函数、理论的阶跃响应曲线和环节的模拟电路图。
五、实验步骤1.熟悉实验台,利用实验台上的各电路单元,构建所设计比例环节(可参考本实验附录)的模拟电路并连接好实验电路;待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。
2.把采集卡接口单元的输出端DA1、输入端AD2与电路的输入端U i相连,电路的输出端U o则与采集卡接口单元中的输入端AD1相连。
连接好采集卡接口单元与PC上位机的通信线。
自动控制实验一一阶系统的时域分析、二阶系统的瞬态响应

自动控制实验报告姓名: 学号: 班级:实验指导老师:__________________ 成绩:____________________实验一 一阶系统的时域分析、二阶系统的瞬态响应一阶系统的时域分析一、实验目的(1)熟悉THBDC-1型 信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用;(2)熟悉各典型环节的阶跃响应特性及其电路模拟;(3)测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验设备(1)THBDC-1型 控制理论·计算机控制技术实验平台;(2)PC 机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线;三、实验内容(1)设计并组建各典型环节的模拟电路;(2)测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响; 四、实验原理典型的一阶系统的传递函数与方框图分别为:当U i (S)输入端输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T 时响应曲线如图1-7所示。
图1-7五、实验步骤1 根据一阶系统的的方框图,选择实验台上的通用电路单元设计并组建其相应的模拟电路,如下图所示。
图中后一个单元为反相器,其中R 0=200K 。
2 若比例系数K=1、时间常数T=1S时,1)()()(+==TS KS U S U s G i O电路中的参数取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1)。
3 若比例系数K=1、时间常数T=0.1S时,电路中的参数取:R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1)。
4 若比例系数K=2、时间常数T=0.1S时,电路中的参数取:R1=100K,R2=200K,C=1uF(K= R2/ R1=2,T=R2C=100K×1uF=0.1)。
《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。
二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。
2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。
3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。
根据系统的阶数不同,其响应形式也不同。
实验仪器:电动力控制实验台,控制箱,计算机等。
三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。
2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。
4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。
5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。
四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。
根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。
2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。
根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。
五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。
通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩
北京航空航天大学
自动控制原理实验报告
学院
专业方向
班级
学号
学生姓名
指导教师
自动控制与测试教学实验中心
实验一 一、二阶系统的电子模拟及时域响应的动态测试
实验时间 实验编号 同组同学
一、实验目的
1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容
1.建立一阶系统的电子模型,观测并记录不同时间常数T 时的跃响应曲线,测定其过渡过程时间T S 。
2.建立二阶系统的电子模型,观测并记录不同阻尼比ζ时的跃响应曲线,测定其超调量σ%及过渡过程时间T S 。
三、实验原理
1.一阶系统
系统传递函数为:(s)(s)(s)1
C K
R Ts Φ=
=+ 模拟运算电路如图1-1所示:
由图1-1得
2
12(s)(s)11
o i R U R K
U R Cs Ts ==
++ 在实验当中始终取R 2=R 1,则K=1,T=R 2
C
U i U o
图1-1 一阶系统模拟电
取不同的时间常数T 分别为:0.25、0.5、1.0。
记录不同时间常数下阶跃响应曲线,测量并纪录其过渡过程时间T S ,将参数及指标填在表1-1内。
表 1-1一阶系统参数指标
S
S
2.二阶系统
系统传递函数为:22
2
(s)
(s)(s)2n n n
C R s s ωζωωΦ==++。
令n ω=1弧度/秒,则系统结构如图1-2所示:
根据结构图,建立的二阶系统模拟线路如图1-3所示:
取R 2C 1=1,R 3C 2=1则
442312R R C R ζ==,42
1
2R C ζ= R(s) C(s)
图1-2 二阶系统结构图 U o
U i 图1-3 二阶系统模拟电路图
ζ取不同的值:0.25、0.5、0.707、1.0,观察并记录阶跃响应曲线,测量超调量σ%,计算过渡过程时间Ts ,将参数及各项指标填入表1-2内。
表 1-2二阶系统参数指标
其中:σ%实测=
-100%⨯最大偏移量稳态值
稳态值
σ%理论=100%e πζ-⨯
T S 理论=
3.5
n
ζω(取5%误差带)
以上实验,配置参数时可供选择的电阻R 值有100K Ω,1M Ω,470K Ω(可调),2.2M Ω(可调),电容C 值有1μf ,10μf 。
四、实验设备
1.HHMN-1型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
五、实验步骤
1.熟悉HHMN-1型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。
2.断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟 线路图搭接线路,不用的运算放大器接成比例器。
3.将D/A1与系统输入端U i 连接,将A/D1与系统输出端U O 连接。
线路接好后,经教师检查后再通电。
每次开始实验采集数据前均要按下“复位”键,消除电容上的残余电荷。
4.在Windows XP 桌面用鼠标双击“MATLAB ”图标后进入,在命令行处键入“autolab ”进入实验软件系统。
5.在系统菜单中选择实验项目,选择“实验一”,在窗口左侧选择“实验模型”,打开一个实验模型界面。
在工具栏中选择“External ”方式,首先选择
图标“Incremental
build”进行编译,然后选择图标“Connect To Target”连接目标,最后选择图标
“Start real-time code”执行。
6.依次改变参数,从“Scope”窗口中观测实验结果,记录实验数据,用MATLAB 绘制实验结果图形,填写实验数据表格,完成实验报告。
六、实验结果
图1-1一阶系统的阶跃响应曲线(T=0.25s)
图1-2一阶系统的阶跃响应曲线(T=0.5s)
图1-3一阶系统的阶跃响应曲线(T=1.0s) 图2-1二阶系统的阶跃响应曲线( =0.25)
图2-2二阶系统的阶跃响应曲线(ζ=0.5) 图2-3二阶系统的阶跃响应曲线(ζ=0.707)
图2-4二阶系统的阶跃响应曲线(ζ=1.0)
七、结果分析
1、一阶系统
一阶系统的阶跃响应曲线具有非振荡特征,由实验结果所得到的数据可知:一阶系统不存在超调量;系统的时间常数T越大,调节时间T S越大,且二者之间呈近似线性关系。
误差分析:
1)实测调节时间比理论值略有延后,可能是由于实验机器存在一定的时间延迟。
2)对分布在误差带线两边的数据,选取里误差带更近的数据所对应的时间作为Ts 时易产生读数误差。
3)由于在MATLAB中作图时间间隔选取过大,因而会影响读数的精确度。
4)实验所用器件本身存在一定误差。
2、二阶系统
ω一定的二阶欠阻尼系统的阶跃响应具有振荡特性,由实验结果所得到的数据可n
知:稳态误差近似为零;当ζ越大,超调量越小,响应的振荡倾向越弱,平稳性越好;随着ζ增大,T S先减小后增大,出现一个拐点,但总体来说T S是相对减小的;当ζ=1时,系统为临界阻尼状态,无振荡,无超调量;对于Ts的理论计算公式,只能在一定程度上判断调节时间,不能作为准确调节时间的数据。
误差分析:
因为和以上一阶系统的实验所用的是同样的实验器材,所以二阶系统的实验中的误
差应当包含以上一阶系统的可能误差。
八、收获、体会及建议。