大学线性代数-克莱姆(Gramer)法则
大学线性代数-克莱姆(Gramer)法则

• 一、含n个未知量n个方程的非齐次 与齐次线性方程组的概念 • 二、Cramer法则 • 三、应用 • 复习小结
§1.5 行列式的应用
• 一、含n个未知量n个方程的非齐次与齐次线性 方程组的概念 • 二、 Gramer法则 • 三、应用 • 复习小结
一、含n个未知量n个方程的非齐次与齐次线性方程组的概念
解
2 x1 x2 5 x3 x4 8, x 3 x 6 x 9, 1 2 4 2 x 2 x 3 2 x 4 5, x1 4 x2 7 x3 6 x4 0. r1 2r2 r4 r2
2 1 5 1 1 3 0 6 D 0 2 1 2 1 4 7 6
解
3 5 2 0 3 0 D 1 1 1 1 1 3
1 4 67 1 2
0,
由上页 3 4 D1 11 6 56
5 2 3 0 1 1 1 3
1 4 1 2
67 , 3
3 3 2 0 4 0 D2 1 11 6 1 1 5 6 系数均为0; 又等式右端为D2 . D2 x2 . 于是 Dx2 D2 . D
用D中第3列元素的代数余子式 A13 , A23 , A33 依次乘方程组的 3个方程
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
D1 81 x1 3, D 27
D3 27 x3 1, D 27
例2 用克莱姆法则解方程组 3 x1 5 x2 2 x3 x4 3, 3 x 4 x 4, 2 4 x1 x2 x3 x4 11 6 , x1 x2 3 x3 2 x4 5 6 .
克莱姆法则的证明及应用

克莱姆法则的证明及应用克莱姆法则(Cramer's rule)是线性代数中的一个重要定理,它提供了一种求解线性方程组的方法。
克莱姆法则的证明可以通过矩阵的行列式理论进行推导,并且可以应用于求解n个未知数的n个线性方程组。
下面我们将详细介绍克莱姆法则的证明以及其应用。
证明:假设有一个n个未知数的线性方程组,可以表示为Ax=b,其中A为一个n阶方阵,x为未知数向量,b为常数向量。
1.首先,我们求解方阵A的逆矩阵A^-12.接下来,我们用行列式的形式表示方程组的解x_i。
(1)当i=1时,我们将方程组的第i列替换为常数列b,得到矩阵A_i。
(2) 计算矩阵A_i的行列式det(A_i),并用方程组的解x_i表示为x_i=det(A_i)/det(A)。
3.重复步骤2,直到求解出n个方程的解x_1,x_2,...,x_n。
通过上述步骤,我们证明了克莱姆法则。
应用:1.求解2x2线性方程组:当线性方程组只包含两个未知数时,可以直接应用克莱姆法则求解。
例如,对于方程组:a₁x+b₁y=c₁a₂x+b₂y=c₂其中a₁、b₁、c₁、a₂、b₂、c₂为已知常数,求解x和y的值可以通过下面的公式计算:x=(c₁b₂-b₁c₂)/(a₁b₂-b₁a₂)y=(a₁c₂-c₁a₂)/(a₁b₂-b₁a₂)2.求解3x3线性方程组:对于包含三个未知数的线性方程组,同样可以利用克莱姆法则进行求解。
例如,对于方程组:a₁x+b₁y+c₁z=d₁a₂x+b₂y+c₂z=d₂a₃x+b₃y+c₃z=d₃其中a₁、b₁、c₁、d₁等为已知常数,可以通过克莱姆法则计算x、y、z 的值。
3.求解特殊矩阵的逆矩阵:4.分析线性方程组的可解性:总结:克莱姆法则是一种求解线性方程组的有效方法,其基本思想是通过行列式运算推导出方程组的解。
克莱姆法则的证明可以通过矩阵的行列式理论进行推导,其应用范围广泛,可以用于求解不同数量未知数的线性方程组,也可以应用于求解特殊矩阵的逆矩阵和判断线性方程组的可解性。
《线性代数》1.5第五节 克莱姆法则

按第一行展开. 由于第一行第 j 1 列的元素 aij 的代数 余子式为
b1 A1 j 1 1
1 j 1
a11 a21 an1
a1 j 1 a2 j 1 anj 1
a1 j 1 a2 j 1 anj 1
a1n a2 n ann
b2 bn
把 A1 j 1 的第1列依次与第2列、第3列、…、第j列 互换,有 所以有
现在验证(2)式是方程组(1)的解,也就是要证明
ai1
D1 D D ai 2 2 ain n bi , D D D
(i 1,2, , ,n)
即 ai1 D1 ai 2 D2 ain Dn bi D 考虑有两行相同的 n 1 阶行列式
bi b1 B b2 bn ai1 a11 a21 an1 ain a1n a2 n 0, ann (i 1, 2, , n)
D1
2 4 1 4 1 2 3 1
1 0 2 2 1 0 2 2
1 2 1 4 1 1 2 4 1 4 0 2 2 4 0 2
= 2,D2=
1 2 3 1 1 2 3
2 4 1 4 1 0 2 2 1 1 1
1 2 1 4 1 1 2 4 1 0 2
线 性 代 数
(第二版)
第五节 克莱姆法则
现在,我们应用 n阶行列式来解含有n个未知量的 n 个线性方程的方程组. 一、克莱姆(Cramer)法则 定理1.5.1(克莱姆法则)若线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2 a1n xn b1 , a2 n xn b2 , ann xn bn .
行列式克莱姆法则

利用克莱姆法则,可以将一个行列式表示为一个数值,通过计算该数值即可得到行列式的值。这种方法适用于系 数行列式不为零的情况,可以简化行列式的计算过程。
实例三:解的唯一性验证
总结词
克莱姆法则可以用于验证线性方程组解的唯一性。
详细描述
通过计算系数矩阵的行列式,利用克莱姆法则判断解的唯一性。如果行列式不为零,则线性方程组有 唯一解;如果行列式为零,则线性方程组可能无解或有无穷多解。这种方法可以用于判断线性方程组 解的情况,为求解问题提供依据。
03 适用范围
研究克莱姆法则的适用范围,探索其在更广泛领 域的应用可能性。
应用领域的拓展
数值分析
将行列式克莱姆法则应用于数值分析中,解决 大规模线性方程组的求解问题。
科学计算
将克莱姆法则与其他科学计算方法相结合,提 高计算效率和精度。
工程领域
将克莱姆法则应用于工程领域,解决实际工程问题,如结构分析、流体动力学 等。
线性方程组解的唯一性条件是克莱姆法则应用的 重要前提之一,它确保了线性方程组的解是唯一 的,从而使得行列式中的每个子式可以代表一个 唯一的解向量。
03
克莱姆法则的推导过程
推导步骤一:行列式的计算
计算行列式的值
根据行列式的定义,按照行或列展开,计算得到行列 式的值。
展开方式的选择
选择合适的展开方式,使得计算过程简化,提高计算 效率。
计算方法的改进
算法优化
优化克莱姆法则的计算方法,提高计算效率,减少计算量。
并行计算
利用并行计算技术,实现克莱姆法则的高效计算,处理大规模数 据。
软件实现
开发适用于克莱姆法则的软件或库,方便用户进行实际应用和计 算。
THANKS
线性代数课件1-5克莱姆法则

线性方程组的解的个数
有唯一解
当系数矩阵的行列式不为零时,线性方 程组有唯一解。
VS
无解或多解
当系数矩阵的行列式为零时,线性方程组 可能无解或多解,此时克莱姆法则不适用 。
03
克莱姆法则的证明过程
系数矩阵的行列式的性质
系数矩阵的行列式不为零
克莱姆法则的前提条件是系数矩阵的行列式 不为零,这是保证线性方程组有唯一解的重 要条件。
线性方程组解的个数的判断
总结词
克莱姆法则可以用于判断线性方程组解的个数。
详细描述
通过计算系数矩阵的行列式值和各列的代数余子式,可 以确定线性方程组的解的个数。如果行列式值不为零, 则线性方程组有唯一解;如果行列式值为零且系数矩阵 的秩等于增广矩阵的秩,则线性方程组有无穷多解;如 果行列式值为零且系数矩阵的秩不等于增广矩阵的秩, 则线性方程组无解。
Ax=b,其中A是系数矩阵,x是未知数矩阵,b是常数矩阵。
特殊形式
当系数矩阵A为方阵时,即行数和列数相等的矩阵,克莱姆法则适用。
系数矩阵的行列式
非零行列式
克莱姆法则的前提是系数矩阵的行列式不为零,即|A|≠0。
行列式的计算
行列式的值是通过其对应元素的代数余子式计算得出的,即|A|=Σ(-1)^(i+j)a_{ij},其中a_{ij}是A的元 素。
解的唯一性
除了证明解的存在性,还需要证明解是唯一 的。这可以通过利用系数矩阵的行列式不为 零的条件和线性方程组的解的性质来证明。
克莱姆法则的证明
证明过程
克莱姆法则的证明过程涉及多个步骤,包括利用代数余子式计算系数矩阵的行列式、将 线性方程组的解表示为系数矩阵的行列式的值等。这个过程需要仔细推导和计算,确保
线性代数—克莱姆法则

线性代数—克莱姆法则
克莱姆法则是由现代数学家狄里克·克莱姆在十九世纪二十年代初发现的一种数学方法,用于快速地解决某些复杂的非线性方程组。
该法则主要有四步:(1)假设一组未知量;(2)求解该组方程;(3)核查解的有效性;(4)如果解有效,则接受该解;否则更改第1步中的未知量,然后重新开始这一过程。
克莱姆法则的运用是基于线性代数中最优化方程组的求解,即确定未知连续变量的值来最大程度地满足非线性方程组限制条件的过程。
由于该法则具有容易理解、计算方便、解结构同构完整、解复杂度小等特点,因而迅速受到业界的欢迎,成为现代线性代数常用的求解方法之一。
克莱姆法则应用于显式多元线性方程组中,它假设这一方程组具有唯一的解,并通过将该方程组映射到另一个虚拟方程组来解决。
它也可以用来求解隐式的多元线性方程组,其优点是能够有效规避数值问题。
实际应用中,克莱姆法则也往往与其它数值技术相结合,如子程序法、减法法等,为解决最优化问题提供了更强大的解决方案。
同时,该法则也被拓展应用到其它领域(如运筹学),并在控制工程和机器人学等领域大量使用。
求解线性方程组的方法探究

求解线性方程组的方法探究作者:杨伍梅来源:《新丝路杂志(下旬)》2018年第04期摘要:线性方程组的求解是大学数学中一个非常基础也很重要的问题,它的求解方法多种多样,在具体问题中如何选择合适的方法正确求解尤其重要。
本文对常用的几种方法进行分析探究,分析出每种方法的优越性与局限性,以便学生正确选择。
关键词:线性方程组;克莱姆法则;高斯消元法;Matlab;逆矩阵线性方程组的求解是线性代数这门课程中的一个很重要的基础部分,它的求解方法多种多样,主要有克莱姆法则、逆矩阵法、高斯消元法、Matlab仿真法等[1]。
下面分别介绍每一种方法的使用条件、解题方法、优越性及局限性,以便具体求解过程中选择合适的方法。
一、用克莱姆(Gramer)法则求解线性方程组1.使用条件要求线性方程组中未知量的个数等于方程的个数,且系数行列式的值不等于零[2]。
2.克莱姆法则当线性方程组(1)满足上述条件时,则可写出线性方程组的系数行列式为:4.优越性与局限性用克莱姆法则求解线性方程组时必须满足方程组的未知量的个数等于方程的个数,且系数行列式的值不等于零两个条件,对于二元与三元线性方程组的求解用这种方法比较方便,但对于三元及三元以上的线性方程组的求解时,由于每次需计算n+1个行列式,计算量较大,因此用这种方法求解不太适应。
二、用逆矩阵求解线性方程组1.使用条件与克莱姆法则的条件相同,即要求线性方程组中未知量的个数等于方程的个数,且系数行列式不等于零。
2.思路分析4.优越性与局限性此种方法在思路上比较简单,但牵涉到逆矩阵的求解与矩阵乘法两种非常基础而又比较复杂的运算[5],比较容易出错,往往容易出现一步错而导致步步错,最终无法正确求解。
但如果系数矩阵为正交矩阵时其逆矩阵就是其转置()[6],所以用这种方法求解时比较容易。
三、用高斯(Gauss)消元法求解线性方程组1.使用条件所有的线性方程组都适应,无特殊要求。
4.优越性与局限性利用高斯消元法解线性方程组适应范围广泛且计算较简便,但对于未知量较多或系数较复杂时往往计算量较大,很难直接计算出结果。
1-7克莱姆(Gramer)法则

的两边,
a11 x1 a12 x2 a13 x3 A11 b1 A11 得 a21 x1 a22 x2 a23 x3 A21 b2 A21 a31 x1 a32 x2 a33 x3 A31 b3 A31
将3个方程的两边相加,得
而其余x1 ,x3的系数均为0; 又等式右端为D2 . D2 x2 . 于是 Dx2 D2 . D
用D中第3列元素的代数余子式 1 A2 A A 3 , 3 ,3 3 依次乘方程组的3个方程
11
跳转到第一页
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
0 1
67
0,
1 1 3 2
3 5 2 4 3 0 D1 11 6 1 1 5 6 1 3
由上页
21
跳转到第一页
1 4 1 2
67 , 3
3 D2 0 1
3 4 56
2 0 1
1 4 1
1 11 6
0,
3 2
3 D3 0 1
5 3 1
3 4 56
例2 用克莱姆法则解方程组 3 x1 5 x2 2 x3 x4 3, 3 x 4 x 4, 2 4 x1 x2 x3 x4 11 6 , x1 x2 3 x3 2 x4 5 6 .
3
解
5 3 1
2 0 1
1 4 1
D
证:显然一定有零解, 当系数行列式D ≠ 0,由定理1,
x1 D D1 D D , x2 2 , x3 2 , , x n n . D D D D 其中 D j 0 j 1, 2, , n . xj 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齐次线性方程组; 若常数项 b1 , b2 ,, bn 全为零 , 此时称方程组为齐次线性方程组.
二、 Gramer法则
定理1 如果线性方程组 a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn
记
b1 D1 b2 b3
a12 a22 a32
a13 a23 , a33 a13 a23 , a33
a11 D3 a21 a31 a12 a22 a32 b1 b2 . b3
a11 b1 D2 a21 b2 a31 b3
用D中第1列元素的代数余子式 A11 , A21 , A31 依次乘方程组的3个方程
的两边
a11 x1 a12 x2 a13 x3 A13 b1 A13 得 a21 x1 a22 x2 a23 x3 A23 b2 A23 a31 x1 a32 x2 a33 x3 A33 b3 A33
将3个方程的两边相加,得
(a11 A13 a21 A23 a31 A33 ) x1 (a12 A13 a22 A23 a32 A33 ) x2 (a13 A13 a23 A23 a33 A33 ) x3 b1 A13 b2 A23 b3 A33
由代数余子式的性质可知, 上式中x3的系数等于D ,
解
3 5 2 0 3 0 D 1 1 1 1 1 3
1 4 67 1 2
0,
由上页 3 4 D1 11 6 56
5 2 3 0 1 1 1 3
1 4 1 2
67 , 3
3 3 2 0 4 0 D2 1 11 6 1 1 5 6 3
1 4 0, 1 2
a11
其中系数行列式 D a21 a31
a12 a22 a32
a13 a23 0, a33
由
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
而其余x1 ,x3的系数均为0; 又等式右端为D2 . D2 x2 . 于是 Dx2 D2 . D
用D中第3列元素的代数余子式 A13 , A23 , A33 依次乘方程组的 3个方程
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
D4 67 x4 1. D 67
D3 67 2 1 x3 , D 67 2
定理1 如果线性方程组1的系数行列式 D 0, 则 1一定有解,且解是唯一的 . 推论: 如果线性方程组 1 无解或有两个不同的 解,则它的系数行列式必为零.
二、重要定理
a11 x1 a12 x2 a1n xn 0 a21 x1 a22 x2 a2 n xn 0 定理2 齐次线性方程组 an1 x1 an 2 x2 ann xn 0
3 5 3 0 3 4 D3 1 1 11 6 1 1 5 6
1 4 1 2
67 , D4 2 1
3 5 0 3
2 0
3 4
1 1 11 6 1 1 3 5 6
67,
由上页
D1 67 3 1 x1 , D 67 3
D2 0 x2 0, D 67
j 1, 2, , n .
定理3
2 有非零解,则它 如果齐次线性方程组
的系数行列式必为零. 系数行列式 D 0
a11 x1 a12 x2 a1n xn 0 a x a x a x 0 21 1 22 2 2n n an1 x1 an 2 x2 ann xn 0
D1 81 x1 3, D 27
D3 27 x3 1, D 27
例2 用克莱姆法则解方程组 3 x1 5 x2 2 x3 x4 3, 3 x 4 x 4, 2 4 x1 x2 x3 x4 11 6 , x1 x2 3 x3 2 x4 5 6 .
3x x x 0 2 3 1
解
1
1 1 1
2
D 1 3
2
1
3 1 3 1 ( 1)
当 1 时只有零解。
三、小结
思考题
当线性方程组的系数行列式为零时,能否用克拉默 法则解方程组?为什么?此时方程组的解为何?
思考题解答
不能,此时方程组的解为无解或有无穷多解. 1. 用克拉默法则解方程组的两个条件 (1)方程个数等于未知量个数; (2)系数行列式不等于零. 2. 克拉默法则建立了线性方程组的解和已知的系 数与常数项之间的关系.它主要适用于理论推导.
a11
(1)
a12 a1 n a 22 a 2 n a n 2 a nn
的系数行列式不等于零,即 D
a 21 a n1
0
那么线性方程组1 有解,并且解是唯一的,解 可以表为
Dn D1 D2 D2 x1 , x2 , x3 , , x n . D D D D
3 4
0
0 0
• 有非零解?方程组只有零解?
为便于理解一般性证明,先对n=3给出证明, 其方法与一般性证明类同. 解线性方程组
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
0 7 5 13 1 3 0 6 0 2 1 2 0 7 7 12
7 5 13
由 上 页 2 1 2 7 7 12
c1 2c2
3 5
3
c 3 2c 2
0 1 0 7 7 2
3 3 27, 7 2
8 9 1 5 1 3 0 6 2 4 1 7 2 6 2 8 5 1 1 9 0 6 D2 0 5 1 2 1 0 7 6
(a11 A12 a21 A22 a31 A32 ) x1 (a12 A12 a22 A22 a32 A32 ) x2 (a13 A12 a23 A22 a33 A32 ) x3 b1 A12 b2 A22 b3 A32
由代数余子式的性质可知, 上式中x2的系数等于D ,
解
2 x1 x2 5 x3 x4 8, x 3 x 6 x 9, 1 2 4 2 x 2 x 3 2 x 4 5, x1 4 x2 7 x3 6 x4 0. r1 2r2 r4 r2
2 1 5 1 1 3 0 6 D 0 2 1 2 1 4 7 6
§1.5 行列式的应用
• 一、含n个未知量n个方程的非齐次 与齐次线性方程组的概念 • 二、Cramer法则 • 三、应用 • 复习小结
§1.5 行列式的应用
• 一、含n个未知量n个方程的非齐次与齐次线性 方程组的概念 • 二、 Gramer法则 • 三、应用 • 复习小结
一、含n个未知量n个方程的非齐次与齐次线性方程组的概念
有非零解.
• • • • • • •
对于齐次线性方程组(2),如下条件等价 1) 系数行列式D不等于0 2) 齐次线性方程组(2)只有零解 3) 齐次线性方程组(2)存在唯一解 4) 齐次线性方程组(2)没有非零解 问题:讨论 D=0 的等价条件
例3 问 取何值时,如下方程组只有零解? x1 x 2 x 3 0 x1 x 2 x 3 0
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
的两边,
a11 x1 a12 x2 a13 x3 A11 b1 A11 得 a21 x1 a22 x2 a23 x3 A21 b2 A21 a31 x1 a32 x2 a33 x3 A31 b3 A31
将3个方程的两边相加,得
由于方程组 2 与方程组 1 等价, 故
Dn D1 D2 D2 x1 , x2 , x3 , , x n . D D D D
也是方程组的 1 解.
同理,
用D中第2列元素的代数余子式 A12 , A22 , A32 依次乘方程组的 3个方程
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 的两边,
其中 D j 是把系数行列式 D 中第 j 列的元素用方程 组右端的常数项代替后所得到的 n 阶行列式,即
a11 a1 , j 1 b1 a1 , j 1 a1n D j a n1 a n , j 1 bn a n , j 1 a nn
例1 用克莱姆法则解方程由上页 D3 0 1 27,
1 8 1 3 9 6 2 5 2 4 0 6
2 1 5 8 1 3 0 9 D4 0 2 1 5 1 4 7 0
27,
D2 108 x2 4, D 27
D4 27 x4 1. D 27
a11 x1 a12 x2 a13 x3 A12 b1 A12 得 a21 x1 a22 x2 a23 x3 A22 b2 A22 a31 x1 a32 x2 a33 x3 A32 b3 A32