运筹学课设 doc(1)
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学课程设计案例(航班问题)

0—1规划模型中国东方航空公司需要分配他的机组成员,使其覆盖所有将要飞行的航班。
我们所研究的重点是,为驻扎在北京市的三组机组人员指定如下表第一列列出的所有航班,另外12列显示的是12条可行的航线(每列数字代表该航线覆盖的航班,及其顺序号)。
在这些航线中,需要选择3条(一对机组人员负责一条航线),但是要保证覆盖所有的航班(允许在一个航班上有多个机组人员,多出的机组人员被视为乘客,但是工会合同要求,多余的机组人员被视为正在工作,得到应有的工资)。
把一对机组人员分配给某条航线的成本由表中的最后一行给出(以万元为单位)。
目标是分配三队机组人员,使他们飞行所有的航班的总成本最小。
用0—1变量建模有12条可行的航线,相应的,我们有12个是或否的决策:应该指定一地机组人员飞行j航线吗?(j=1,2, (12)因此,我们使用12个0-1变量分别代表这些决策:1,如果给航线j指定一组机组人员;X j=0,否则。
该模型最有趣的地方是,每个约束条件实际上是保证一个航班被覆盖。
例如考虑表中的最后一个航班(西安到上海)。
五条航线(也就是6航线、9航线、10航线、11航线和12航线)包括航班,因此,公司之上会选择其中一条航线飞行。
结果约束条件是x6+x9+x10+x11+x12≥1对另外11个航班使用类似的约束完成BIP模型是Min=2X1+3X2+4X3+6X4+7X5+5X6+7X7 +8X8+9X9+9X10+8X11+9X12s.t.x1+x4+x7+x10≥1 (北京—上海)x2+x5+x8+x11≥1 (北京—广州)x3+x6+x9+x12≥1 (北京—西安)x4+x7+x9+x10+x12≥1 (上海—重庆)x1+x6+x10+x11≥1(上海—北京)x4+x5+x9≥1(重庆—广州)x7+x8+x10+x11+x12≥1(重庆—西安)x2+x4+x5+x9≥1(广州—北京)x5+x8+x11≥1(广州—重庆)x3+x7+x8+x12≥1(西安—北京)x6+x9+x10+x11+x12≥1 (西安—上海)x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+ x12=3 (共三队机组成员)且x j是0-1变量。
运筹学(1)

一、绪论§1 运筹学的简史运筹学作为科学名称出现于20世纪30年代末。
英、美对付德国空袭,采用雷达,技术上可行,实际运用不好用。
如何合理运用雷达?“运用研究”(Operational Research),我国1956年用“运用学”名词,1957年正式定名为运筹学。
运筹学小组在英、美军队中成立,研究:护航舰队保护商船队的编队问题、当船队遭受德国潜艇攻击时如何使船队损失最小问题、反潜深水炸弹的合理爆炸深度(德国潜艇被摧毁数增到400%)、船只在受敌机攻击时的逃避方法(大船急转向、小船缓转向,中弹数由47%降到29%)。
运筹学组织在英、美军队(RAND)中成立,研究:战略性问题、未来武器系统的设计和合理运用方法、美国空军各种轰炸机系统的评价、未来武器系统和未来战争战略、苏联军事能力及未来预报、苏联政治局计划的行动原则和未来战争的战略、到底发展哪种洲际导弹(50年代)、战略力量的构成和数量(60年代)。
运筹学在工业、农业、经济、社会问题等领域有应用。
运筹数学:数学规划(线性规划(丹捷格(G.B.Dantzig)1947,单纯形法;康托洛维奇1939解乘数法,1960《最佳资源利用的经济计算》,诺贝尔奖;列昂节夫1932投入产出模型;冯.诺意曼)、非线性规划、整数规划、目标规则、动态规划、随机规划等)、图论与网络、排队论(随机服务系统理论)(丹麦工程师爱尔朗(Erlang)1917提出一些著名公式)、存贮论、对策论(冯.诺意曼和摩根斯坦,1944《对策论与经济行为》)、决策论、维修更新理论、搜索论、可靠性和质量管理等。
运筹学领域的诺贝尔奖得主:阿罗、萨谬尔逊、西蒙(经济学家)、多夫曼、胡尔威茨、勃拉凯特(Blackett,美,物理学家)。
运筹学会的建立:英国(1948年)、美国(1952年)、法国(1956年)、日本(1957年)、印度(1957年)、中国(1980年),38个国家和地区。
国际运筹学联合会(IFORS)的成立:1959年,英、美、法发起成立,中国1982年加入。
运筹学课后习题解答_1.(DOC)

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题min z=2x1 3x2a4x1 6x2 6 )2x2 4 st.. 4x1x1, x2 0解:由图 1 可知,该问题的可行域为凸集 MABCN,且可知线段 BA上的点都为最优解,即该问题有无量多最优解,这时的最优值为3z min =23 0 3 2P47 1.3 用图解法和纯真形法求解线性规划问题max z=10x1 5x 2a )3x1 4x2 95x1 2x2 8st..x1, x2 0解:由图 1 可知,该问题的可行域为凸集OABCO,且可知 B 点为最优值点,3x1 4x2x1 1 T 9 3,即最优解为x*1,3即2x2 8x2 2 5x1 2这时的最优值为 z max =10 1 5 3 35 2 2纯真形法:原问题化成标准型为max z=10x15x23x1 4 x2x39st.. 5x12x2x48x1 , x2 , x3 ,x4 010 5 0 0c jC B X B b x1 x2 x3 x49 3 4 1 0x38 [5] 2 0 1x410 5 0 0C j Z j21/5 0 [14/5] 1 -3/5 x38/5 1 2/5 0 1/5 10x10 1 0 -2C j Z j53/2 0 1 5/14 -3/14 x21 1 0 -1/7 2/7 10x10 0 -5/14 -25/14C j Z j1,3 T1015335因此有 x*, zmax2 2 2P78 2.4 已知线性规划问题:max z 2 x1 4x2 x3 x4x1 3x2 x4 82x1 x2 6x2 x3 x4 6x1 x2 x3 9x1 , x2 , x3,x4 0求: (1) 写出其对偶问题;(2)已知原问题最优解为X* (2,2,4,0) ,试依据对偶理论,直接求出对偶问题的最优解。
解:( 1)该线性规划问题的对偶问题为:min w 8 y1 6 y2 6 y3 9 y4y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1y1 y3 1y1, y2 , y3 ,y4 0(2)由原问题最优解为X* ( 2,2,4,0) ,依据互补废弛性得:y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1把 X * (2,2,4,0) 代入原线性规划问题的拘束中得第四个拘束取严格不等号,即 2 2 4 8 9 y4 0y1 2 y2 2进而有3y1 y2 y3 4y3 1得 y 4 , y2 3, y31, y 01 5 5 4( 4,3,1,0)T,最优值为w min16因此对偶问题的最优解为y*5 5P79 2.7考虑以下线性规划问题:min z 60x140x280x33x12x2x3 24x1x23x3 42x12x22x3 3x1, x2 , x30( 1)写出其对偶问题;( 2)用对偶纯真形法求解原问题;解:( 1)该线性规划问题的对偶问题为:max w 2y1 4 y23y33y1 4 y2 2 y3602 y1 y22y340y13y22y380y1, y2 , y30(2)在原问题加入三个废弛变量x4 , x5 , x6把该线性规划问题化为标准型:max z 60x1 40x2 80x33x1 2x2 x3 x4 24x1 x2 3x3 x5 42 x1 2x2 2x3 x6 3x j 0, j 1, ,6c j-60 -40 -80 0 0 0 C B X B b x1 x2 x3 x4 x5 x6x4-2 -3 -2 -1 1 0 0x5-4 [-4] -1 -3 0 1 0x6-3 -2 -2 -2 0 0 1 C j Z j-60 -40 -80 0 0 0x41 0 -5/4 5/4 1 -1/12 080x11 1 1/4 3/4 0 -1/4 0x6-1 0 [-3/2] -1/2 0 -1/2 1C j Zj0 -25 -35 0 -15 0x411/6 0 0 5/3 1 1/3 -5/680x15/6 1 0 2/3 0 -1/3 1/640x22/3 0 1 1/3 0 1/3 -2/3C j Zj0 0 -80/3 0 -20/3 -50/3x* ( 5 , 2 ,0) T , z max 60 5 40 2 80 0 2306 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、资料等相关数据见下表。
系统工程与运筹学课程设计,lingo,层次分析法应用系统最优化问题

学号系统工程与运筹学课程设计设计说明书层次分析法应用系统最优化问题起止日期:2013年11月25 日至2013 年11月29日学生姓名班级成绩指导教师经济与管理学院2013年11月29日成绩评定表目录Ⅰ研究报告 (1)课程设计题目1:改革新形式下的大学生形象评价 (1)1.问题的提出 (1)2.分层递阶结构模型 (2)3.判断矩阵及相关计算结果 (2)4.单排序及总排序计算过程及结果 (6)5.结果分析 (6)5.1结果 (6)5.2分析 (6)课程设计题目2:人员合理分配问题 (7)1.问题的提出 (7)2.问题分析 (7)3.基本假设与符号说明 (7)4.模型的建立及求解结果 (8)5.模型评价 (9)课程设计题目3:生产调运问题 (10)1.问题的提出 (10)2.问题分析 (11)3.基本假设与符号说明 (11)4.模型的建立及求解结果 (12)5.模型评价 (18)II工作报告 (19)III 参考文献 (20)附件一:人员合理分配问题lingo程序及结果 (21)附件二:生产调运问题lingo程序及结果 (22)Ⅰ研究报告课程设计题目1:改革新形式下的大学生形象评价摘要:大学生如何塑造个人形象?首先我们要了解形象这个概念以及它的重要性,得体的塑造和维护形象,会给初次见面的人以良好第一印象。
塑造大学生形象还要关注社会,放眼世界,注重群体性,同时作为大学生形象塑造最重要主体的大学生,在平时学习、生活中就应该有意识地培养、塑造自身形象,为自己在人际交往过程中、特别是未来就业求职道路上增加重要的竞争砝码。
有的人说青春就是最好的包装,天生丽质、潇洒帅气就是大学生的理想形象。
但是,我们觉得所谓的形象,并不能简单地理解为人的外表特征,更应是人的精神和内在素质通过外表的一种自然流露和表现;大学生必须在学习和实践中不断扩展自己的知识面,掌握一定的技能,如果只重外表,不重内涵构造出来的形象,则只能是肤浅和苍白无力的。
运筹学复习资料(1)

运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。
其中,可行域无界,并不意味着目标函数值无界。
无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。
有界可行域对应唯一最优解和多重最优解两种情况。
线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。
单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。
换基迭代要求除了进基的非基变量外,其余非基变量全为零。
检验最优性的一个方法是在目标函数中,用非基变量表示基变量。
要求检验数全部小于等于零。
“当x 1由0变到45/2时,x 3首先变为0,故x 3为退出基变量。
”这句话是最小比值法的一种通俗的说法,但是很有意义。
这里,x 1为进基变量,x 3为出基变量。
将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。
单纯型原理的矩阵描述。
在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m 矩阵与其最初的那一列向量的乘积。
最初基变量对应的基矩阵的逆矩阵。
这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。
但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。
解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。
(完整word版)运筹学》习题答案 运筹学答案汇总

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解( )BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?( )BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是( )DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的 B .不增不减的 C .增加的 D .难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A ,B ,C 三相邻结点的距离分别为15km ,20km,25km ,则( )。
DA.最短路线—定通过A 点B.最短路线一定通过B 点C.最短路线一定通过C 点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈 C .存在三个圈 D .不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于 600 700300 500 400锅炉房12312.在计算最大流量时,我们选中的每一条路线( )。
运筹学 排队论(1)

运筹学排队论1. 简介排队论是运筹学中重要的一个分支,它研究了在人员、物品或信息流动过程中产生的排队现象,并通过建立数学模型和分析这些模型来探讨和优化系统中的排队行为。
排队论在各个领域都有广泛的应用,如交通运输、电信网络、生产制造等。
2. 排队模型排队论中常用的模型包括M/M/1模型、M/M/s模型、M/G/1模型等。
其中,M表示到达过程的分布,而G表示服务时间的分布。
而数字1或s则表示系统中的服务通道数。
2.1 M/M/1模型M/M/1模型是排队论中最简单的一个模型,它假设到达过程和服务时间都服从指数分布。
该模型中只有一个服务通道。
2.2 M/M/s模型M/M/s模型是M/M/1模型的扩展,它假设到达过程和服务时间仍然服从指数分布,但有s个服务通道。
M/M/s模型适用于有多个并行服务通道的排队系统。
2.3 M/G/1模型M/G/1模型假设到达过程服从泊松分布,而服务时间服从一般分布。
该模型在实际应用中更为常见,因为服务时间往往不服从指数分布。
3. 排队论的性能度量排队论的性能度量是对排队模型进行定量分析和评估的重要手段,常见的性能度量指标包括平均等待时间、平均逗留时间、系统繁忙率等。
3.1 平均等待时间平均等待时间是指在排队系统中,每个顾客平均等待的时间长度。
通过对排队模型的分析和计算,可以得到平均等待时间的具体数值。
3.2 平均逗留时间平均逗留时间是指每个顾客在排队系统中逗留的平均时间长度。
它等于平均等待时间加上服务时间。
3.3 系统繁忙率系统繁忙率是指服务通道在单位时间内处于工作状态的比例。
它可以用来评估系统是否能够满足顾客的需求。
4. 排队论的应用4.1 交通运输排队论在交通运输领域的应用非常广泛。
例如,交通信号灯的控制就可以通过排队论进行优化,以减少车辆的等待时间和交通拥堵。
4.2 电信网络在电信网络中,排队论被用于研究数据包的传输和路由机制。
通过对排队论模型的分析,可以提高网络的传输效率和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安建筑科技大学课程设计(论文)任务书一、本次课程设计应达到的目的1. 掌握运筹学知识在管理问题中应用的基本方法与步骤;2. 巩固和加深对所学运筹学理论知识及方法的理解与掌握;3. 培养与锻炼学生从管理实践中提炼问题、分析问题、构建模型求解问题的综合应用能力;4. 上机练习,了解与掌握几种常用的运筹学计算软件及其使用与操作方法;5. 锻炼并初步掌握运筹学模型求解程序的编写方法与技术。
6. 初步了解学术研究的基本方法与步骤,并通过设计报告的撰写,了解学术报告的写作方法。
二、本次课程设计任务的主要内容和要求1. 结合专业知识,对某一实际管理问题进行分析,调查收集相关数据,并整理出符合问题特征的数据,包括目标因素、约束因素以及必须的参数与系数等等;2. 在上一步分析基础上,按照运筹学建模的基本方法与要求,通过抽象处理,建立所研究问题的运筹学模型,判断模型的类型并选择求解方法;3. 上机练习,学习常用运筹学计算软件的使用与基本操作方法,并选择其中一种对所建运筹学模型进行求解,得出最优解、灵敏度计算等相关计算结果;4. 结合理论课以及计算机程序设计课程所学的基本知识,编写线性规划单纯形法的计算程序,别用所编写程序和已学习的某种运筹学计算软件,并分求解相关课后习题,对所编写的算程序进行验证;5. 总结设计过程,整理与记录设计中的关键工作与成果,撰写设计报告。
三、应收集的资料及主要参考文献:1. 应收集的资料:[1]研究对象的现状数据材料[2]与所建模型的参数、系数、约束条件等因素相关的数据材料2. 主要参考文献:[1]杨茂盛.运筹学(第三版).陕西科学技术出版社,2006[2]运筹学编写组. 运筹学(第三版).清华大学出版社,2005[3]徐玖平, 胡知能, 王緌. 运筹学(第二版). 北京: 科学出版社, 2004[4]胡运权. 运筹学基础及应用. 哈尔滨: 哈尔滨工业大学出版社, 1998[5]陈汝栋,于延荣. 数学模型与数学建模(第2版).国防工业出版社,2009[6]刘建永.运筹学算法与编程实践:Delphi实现.清华大学出版社,2004[7]谢金星,薛毅.建优化建模LINDO/LINGO软件.清华大学出版社,2005设计总说明运筹学在实际生活中的应用主要解决两类问题,而本次设计是研究烟草种植的成本最小化问题。
在一个系统中经常遇到两类决策问题:一类是如何利用确定的资源去完成最大的任务,另一类是如何利用最少的资源来完成一个确定的任务。
问题的背景是某烟草基地的烟草种植对肥料的合理分配问题,可以有多种方案,但要使成本资金达到最小,节约成本,增加经济效益。
从表面现象难以做出准确的决策。
这就需要用运筹学中的有关知识,通过对一个问题条件分析,建立模型,求解问题,提高对解进行分析与评价的综合运用能力。
并利用lindo计算软件求解问题的操作掌握计算软件的基本操作方法,了解计算机在运筹学中的运用,提高自身分析问题、解决问题的能力。
到最后求解出最优的研究路线,来得出问题的最优方案。
关键词:运筹学,烟草肥料,最优搭配,成本最小化,LINDO目录1绪论............................................................. - 4 -1.1研究背景....................................................... - 4 -1.2研究意义与目的............................................. - 4 -1.3研究的内容................................................. - 5 -1.4研究主要方法与思路......................................... - 6 -2理论方法的选择................................................... - 7 -2.1所研究问题特点............................................. - 7 -2.2拟采用的运筹学理论方法特点................................. - 7 -2.3理论方法的实用性及有效性论证............................... - 7 -3模型的建立....................................................... - 8 -3.1基础数据的确定............................................. - 8 -3.2变量的设定................................................. - 8 -3.3目标函数的建立............................................. - 8 -3.4限制条件的确定............................................. - 9 -3.5模型的建立................................................ - 10 -4模型的求解及解的分析............................................ - 11 -4.1模型的求解................................................ - 11 -4.2解的分析及评价............................................ - 15 - 5总结……………………………………………………………………………………………………………………- 16 -代码:........................................................... - 16 -参考文献:....................................................... - 22 -1绪论1.1研究背景近两年来,在玛纳斯县境内、塔西河冲积扇的中部进行了烤烟的试验和试种。
试种结果表明,玛纳斯县种植的G-140,NC89,中烟14、15等新品种,均获得了可喜的成果。
1985~1986年全县试种烤烟700亩,收获优质烟叶71490.5公斤,总产值达184157.84元。
1987年扩种面积1000亩。
预计比往年有较大幅度的增长。
经河南省烟草研究所化验,烟叶指标基本上达到了国家规定的质量标准。
而肥料是作物增产的物质基础,合理施用肥料是提高烟叶产量和质量的一项重要技术措施。
烤烟施肥的目的不但要提高单位面积上的产量和经济效益,更重要的是要有利于烟叶品质的形成与提高。
本课程设计通过对烟草施肥进行研究,运用运筹学的有关知识,对研究数据进行规划、建模实现施肥搭配优化。
1.2研究意义与目的研究的意义:通过本次研究,可以得到此题的最佳解决方案,并可以建立数学模型,把其推广至同类问题,为其他类似问题提供快捷、高效的方法。
让烟草种植者再以后遇到类似问题时可以一定的参考文献,可以从一定程度上提高种植者的收入,作到合理的资金分配和最有效的资源的配制。
研究的目的:1)巩固和学习曾经学习过的运筹学课程,学会用理论解决实际问题。
2)种植花费最小,获得最大收益。
3)通过运筹设计,一定程度上解决种植成本分配,助决策者或决策机构对其所控制的活动进行实现优化决策。
加快烟草种植的标准化步伐,增强产品的市场竞争力,提高种植的效益,刺激并提高烟草种植者的种植积极性。
4)通过利用运筹学软件求解模型的操作,掌握运筹学计算机软件的基本操作方法。
1.3研究的内容通过对资金的计算和生产的需要的分析可以制定出有效的肥料搭配,使农民既可以提高烟草产量又可以合理改善其品质。
本次研究针对以下存在问题:(一)、改善烟草的肥料搭配,并且不影响烟草种植新技术的推广工作,提高烟草生产效益。
(二)、改善标准化生产水平低的状况。
(三)、不同时期的烟草所用的肥料搭配不同。
本次研究课题是:某烟草种植基地所用的化肥是由各种肥料配混而成。
包括氮肥、磷肥、钾肥、复合肥,且各种烟草的肥料配比成分及比例是不一样的,这里以每亩烟草为单位。
具体需要如下表:表1: 各种肥料及配比关系表虽然各种烟草的肥料比例各不一样,但各种原料每周的最大供应量是确定的。
根据近期调查和统计,具体数据如下:比例氮肥 磷肥 钾肥 复合肥 经济烟草 ≥2/9 ≥2/9 ≥3/9 ≤2/9 高档烟草 ≥2/9 ≥1/9 ≤1/3 ≤1/3 烟草苗≤1/3≤1/3≥1/3种类表2:各种原料的单价及供应量表原料种类氮肥磷肥钾肥复合肥单价(元/斤)0.8 0.03 2.2 1.5 周供应量(斤)42 32 30 50 再根据烟草的种类及数目确定每周需要的肥料数量,数据如下表:表3:各种肥料需求表:烟草种类种类经济烟草高档烟草烟草苗周需求量74 47 331.4研究主要方法与思路在现实生活中,如果若干项活动都要使用数量有限的某种资源,或者一项或几项活动生产出同一种资源要供另外一些活动来使用,那么这些活动之间就存在着相互抵赖的关系。
这种有限的资源可以是资金、材料、劳力、或生产设备或经营设备。
在任何实际活动中,这些资源中总有一些或几种必然要限制利润的最大化或成本的最小化。
在这中情况下找出最好的活最优的分配方案就是线性规划的任务。
本次研究用运筹学线性规划解决的实际问题是如何使种植费用最小,首先根据自己所需要结局的问题建立线性规划的数学模型,其次对已得模型利用计算机求解这个线性规划,得出最优解,确定符合实际再施于实践。
本次研究将采用运筹学中线性规划的有关思想方法,从而取得问题的最优解决方案。
主要思路是:从要求和条件入手,分析数据结构,建立恰当的数学模型,用Lindo 软件在计算机上求解。
2理论方法的选择2.1所研究问题特点既然是合理搭配必定会遇到各种线性规划的条件。
利用并不是盲目的,而是在一定的条件下进行的。
要求成本最小,肥料选用不能为负数。
求解过程在Lindo软件上进行计算。
2.2拟采用的运筹学理论方法特点将采用线性规划的思想方法对此题求解。
线性规划是运筹学中发展最完善,并且应用最广泛的一个分支,其研究的主要对象有:一类是给定了人力、物力资源,研究如何用这些资源完成任务,另一类是研究如何统筹安排,尽量以最少的人力、物力资源完成该项任务。
在本设计中研究的是资金一定的条件下,合理规划资金,使烟农种植费用花费最少。