图形与几何知识整理
图形与几何的知识点

图形与几何的知识点几何学是一门研究空间和形状的学科,涉及到各种图形、角度、长度和曲线等概念。
在数学中,几何学是一门重要且有趣的学科,它帮助我们理解并描述了我们周围的世界。
本文将介绍几何学中一些重要的知识点。
一、线段与线线段是由两个端点连接而成的一条线,没有端点的线称为直线。
线段和直线是几何学中的基本概念,它们是构成其他图形的基础。
二、角度角度是由两条线段或线分割成的两个部分,可以用来衡量图形之间的关系。
角度分为锐角(小于90度)、直角(等于90度)和钝角(大于90度)三种。
三、三角形三角形是由三条线段连接而成的图形,它是几何学中最简单的多边形。
三角形的性质包括内角和为180度、两边之和大于第三边等。
四、四边形四边形是由四条线段连接而成的图形,常见的四边形包括矩形、正方形、平行四边形和梯形等。
不同的四边形有着各自独特的性质和特点。
五、圆形圆形是由一个固定点到平面上任意一点的距离相等的所有点构成的图形。
圆形的重要性质包括半径、直径、弧长和面积等。
六、多边形多边形是由多条线段连接而成的图形,其中最常见的是三角形、四边形和五边形等。
多边形的性质包括内角和、外角和、对角线和等。
七、立体图形立体图形是由平面图形围绕着一条轴旋转或沿着一条边拉伸而成的图形。
常见的立体图形包括球体、长方体、圆柱体和圆锥体等。
八、相似与全等相似和全等是几何学中用于描述图形形状关系的重要概念。
相似的图形具有相同的形状但大小可能不同,而全等的图形则既具有相同的形状又具有相同的大小。
九、坐标系坐标系是用来确定平面上点的位置的系统。
常见的坐标系有直角坐标系和极坐标系,它们在几何学中被广泛应用于图形的表示和计算。
总结:图形与几何的知识点是数学中非常基础且重要的一部分,它帮助我们理解和描述了我们周围的世界。
本文简要介绍了线段与线、角度、三角形、四边形、圆形、多边形、立体图形、相似与全等以及坐标系等几何学中的重要知识点。
对于进一步深入学习和应用几何学,这些知识点为我们奠定了坚实的基础。
图形与几何知识整理

圆柱与圆锥
圆柱:
例1
通过观察实物认识圆柱,知道圆柱的底面、侧面与高,了解圆柱的特征;通过活动感受平面图形与立体图形的转换;
例2
认识圆柱侧面的展开图;
例1
引导学生观察圆锥形实物,认识圆锥的地底面、侧面与高,掌握它们的主要特征,并介绍了测量圆锥的方法;
图形的运动
二下
图形的运动(一)
例1
认识轴对称图形;
例3
解决问题:用七巧板拼指定的图形;
二上
角的初步认识
例1
认识角、角的各部分的名称;
例3
认识直角;
例5
认识锐角与钝角;
例6
解决问题;
观察物体(一)
例1
辨认从不同位置瞧到的简单物体的形状;
例2
辨认从不同位置瞧到的简单几何体的形状;
例3
用推理解决简单的问题;
三上
长方形与正方形
例1
找四边形,感悟四边形的特征,有四条边与四个角;
例2
认识长方形与正方形,了解它们的特点;
四上
角的度量
认识线段、直线与射线,了解它们的特征与区别;
认识角的表示方式;了解直角、平角以及周角的度数;
例2:比较锐角、直角、钝角、平角与周角之间的关系;
平行四边形与梯形
平行与垂直
平行四边形与梯形
例1
认识同一平面内两条直线的特殊位置关系:平行与与垂直;
例3
认识“点到直线的距离”;了解两条平行线间的距离相等;
例5
认识米与厘米的关系;
例6
认识线段;
例7
学会用尺子画给定长度(限整厘米)的线段;
例8
解决问题,巩固学生建立的厘米与米的长度表象,培养学生对长度单位进行实际运用的能力;
小学数学图形与几何知识点归纳汇总

图形与几何线和角(1)线*直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
*射线射线只有一个端点;长度无限。
*线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
*平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
*垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的(2)角的分类顶点,这两条射线叫做角的边。
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b)s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c=4as=a23三角形(2)计算公式(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah+2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
图形与几何知识点整理图形与几何复习知识点

图形与几何知识点整理图形与几何复习知识点在数学中,图形和几何是非常重要的部分。
图形是由线条、点和面组成的实体,而几何则是研究这些实体的形状、大小、位置等性质的学科。
掌握图形和几何知识对于解决各种数学问题和生活中的实际问题都非常重要。
在本文中,我们将一些常见的图形和几何知识点整理,希望能够对读者有所帮助。
矩形的定义、性质及判定1.定义:有一个角是直角的平行四边形叫做矩形2.性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4.对称性:矩形是轴对称图形也是中心对称图形。
几何平均数的定义几何平均数是对各变量值的连乘积开项数次方根。
求几何平均数的方法叫做几何平均法。
如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。
根据所拿握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。
几何平均数的公式几何平均值是n个变量值连乘积的n次方根。
根据所拿握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。
简单的几何平均值的计算公式为G=n√X1·X2·…·Xn。
1.几何平均数受极端值的影响较算术平均数小。
2.如果变量值有负值,计算出的几何平均数就会成为负数或虚数。
3.它仅适用于具有等比或近似等比关系的数据。
4.几何平均数的对数是各变量值对数的算术平均数。
菱形的定义、性质及判定1.定义:有一组邻边相等的平行四边形叫做菱形(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形(4)菱形的面积等于两条对角线长的积的一半2.s菱=争6(n、6分别为对角线长)3.判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形4.对称性:菱形是轴对称图形也是中心对称图形几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。
小学数学图形与几何重点知识归纳总结

小学数学图形与几何重点知识归纳总结(一)图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有:千米、米、分米、厘米、毫米。
二、长度单位:三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:(100)七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
二、从一点引出两条射线,就组成了一个角。
角的大小与两边叉开的大小有关,与边的长短无关。
角的大小的计量单位是(°)。
三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
五、三角形是由三条线段围成的图形。
围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
七、三角形的内角和等于180度。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。
十、四边形是由四条边围成的图形。
常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
图形与几何初中知识点总结

图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要研究形状、大小以及它们之间的关系。
在初中阶段,学生将会接触到一系列的图形和几何知识。
本文将对这些初中图形与几何的知识点进行总结。
一、平面图形1. 三角形:三边的关系、内角和、直角三角形、等腰三角形等。
2. 四边形:平行四边形、矩形、正方形、菱形等。
3. 多边形:五边形、六边形、正多边形等。
4. 圆:圆的半径、直径、弧长、面积等。
二、空间图形1. 立体图形:长方体、正方体、圆柱体、圆锥体、正棱柱等。
2. 进一步了解这些立体图形的表面积、体积和侧面积的计算方法。
三、相似与全等1. 相似:两个图形形状相同,但大小可能不同。
学生需要了解相似三角形的判定条件,以及相似图形的比例关系。
2. 全等:两个图形既形状相同,又大小相同。
学生需要了解全等图形的性质和判定条件,以及如何做全等图形的对应构造。
四、坐标系与平面直角坐标系1. 坐标系的概念:了解平面上的点如何用坐标来表示。
2. 平面直角坐标系:了解直角坐标系的构建方法,以及如何通过坐标计算两点之间的距离和斜率。
五、角与角的计算1. 角的概念:了解角的定义,以及如何用角度和弧度来表示角。
2. 角的运算:了解角的加法、减法、相等和互补关系等。
六、直线与曲线1. 平行线和垂直线的概念:了解直线之间的平行和垂直关系。
2. 直线与曲线的交点:了解直线和圆的交点性质,以及如何通过已知条件求解交点问题。
七、投影与旋转1. 投影的概念:了解正交投影和斜投影的概念,以及投影的性质和相关计算方法。
2. 旋转的概念:了解平面上图形的旋转概念,以及旋转的性质和相关计算方法。
八、对称与镜像1. 对称的概念:了解平面上的图形对称性,以及对称图形的性质和判断方法。
2. 镜像的概念:了解平面上的图形镜像关系,以及镜像图形的构造方法。
九、尺规作图1. 基本作图:了解使用尺规作图工具(直尺和圆规)进行基本图形的作图。
2. 组合作图:了解使用尺规作图工具进行更复杂图形的作图,如平分角、作已知角的整倍角等。
图形与几何学习知识内容梳理.docx

小学阶段图形与几何知识内容梳理图形与几何包括四个方面:一、图形的认识二、测量三、图形的运动四、图形与位置一、图形的认识第一学段:1、能通过实物和模型辨认长方体、正方体、圆柱和球等几何体。
2、能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体。
3、能辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
4、通过观察、操作,初步认识长方形、正方形的特征。
5、会用长方形、正方形、三角形、平行四边形或圆拼图。
6、结合生活情境认识角,了解直角、锐角和钝角。
7、能对简单几何体和图形进行分类。
第二学段:1、结合实例了解线段、射线和直线。
2、体会两点间所有连线中线段最短,知道两点间的距离。
3、知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。
4、结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
5、通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆。
6、认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。
7、认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
8、能辨认从不同方向(前面、侧面、上面)看到的物体的形状图。
9、通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
二、测量第一学段:1、结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性。
2、在实践活动中,体会并认识长度单位千米、米、厘米,知道分米、毫米,能进行简单的单位换算,能恰当地选择长度单位。
3、能估测一些物体的长度,并进行测量。
4、结合实例认识周长,并能测量简单图形的周长,探索并掌握长方形、正方形的周长公式。
5、结合实例认识面积,体会并认识面积单位厘米2、分米 2、米 2,能进行简单的单位换算。
6、探索并掌握长方形、正方形的面积公式,会估计给定简单图形的面积。
第二学段:1、能用量角器量指定角的度数,能画指定度数的角,会用三角尺画30°, 45°, 60°, 90°角。
图形与几何知识点整理

图形与几何知识点整理一、直线与线段直线是由无数个点组成的连续集合,没有起点和终点,可以延伸到无穷远;线段是直线的一部分,有起点和终点。
二、角度与三角形1. 角度角度是由两条射线共享一个端点而形成的图形,以度(°)为单位表示,可以分为锐角、直角、钝角和平角。
2. 三角形三角形是由三条线段组成的图形,根据边的长短和角的大小,可以分为等边三角形、等腰三角形和普通三角形。
三、四边形与多边形1. 四边形四边形是由四条线段组成的图形,根据边的性质可以分为平行四边形、矩形、菱形、正方形和梯形。
2. 多边形多边形是由多条线段组成的图形,根据边的数量可以分为三角形、四边形、五边形等。
四、圆与球体1. 圆的性质圆是由所有与一个确定点的距离相等的点组成的图形,圆心是确定点,半径是连接圆心和任意一点的线段。
2. 球体球体是由所有与一个确定点的距离相等的点组成的立体图形,球心是确定点,半径是连接球心和任意一点的线段。
五、平面与立体图形1. 平面与直线的关系平面上的两条直线可以相交、平行或重合。
2. 立体图形的表面积和体积立体图形的表面积是指该图形的所有面的面积之和,体积是指该图形所占的空间大小。
六、相似与全等1. 相似图形相似图形是指两个图形的形状相似,但尺寸可以不同,对应角度相等,可以通过比例关系得到对应边长的关系。
2. 全等图形全等图形是指两个图形的形状和尺寸完全相同,对应角度和边长都相等。
七、坐标与向量1. 坐标系坐标系是由横轴和纵轴组成的直角坐标表示法,可以用来表示平面上的点的位置。
2. 向量向量是有大小和方向的量,可以用于表示平移、旋转等运动。
八、三维几何三维几何是指在三维空间中研究图形的几何学,包括点、线、面的位置关系以及体积等概念。
九、几何证明几何证明是指通过推理和逻辑分析来证明几何问题的方法,可以使用各种几何定理和性质进行推导和论证。
这些是图形与几何的主要知识点整理,通过对这些知识点的学习和掌握,我们可以更好地理解和应用几何学在实际生活和问题解决中的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识长方形和正方形,了解它们的特点;
四上
角的度量
认识线段、直线和射线,了解它们的特征和区别;
认识角的表示方式;了解直角、平角以及周角的度数;
例2:比较锐角、直角、钝角、平角和周角之间的关系;
平行ห้องสมุดไป่ตู้边形和梯形
平行与垂直
平行四边形和梯形
例1
认识同一平面内两条直线的特殊位置关系:平行和和垂直;
例3
认识“点到直线的距离”;了解两条平行线间的距离相等;
六下
圆柱与圆锥
圆柱:
例1
通过观察实物认识圆柱,知道圆柱的底面、侧面和高,了解圆柱的特征;通过活动感受平面图形与立体图形的转换;
例2
认识圆柱侧面的展开图;
例1
引导学生观察圆锥形实物,认识圆锥的地底面、侧面和高,掌握它们的主要特征,并介绍了测量圆锥的方法;
图形的运动
二下
图形的运动(一)
例1
认识轴对称图形;
平行四边形面积计算公式的应用;
推导三角形面积的计算公式;
例2
三角形面积计算公式的应用;
推导梯形面积的计算公式;
例3
梯形面积计算公式的应用;
例4
学习组合图形面积的计算,渗透算法多样化的思想;
例5
利用方格估算不规则图形的面积;
五下
长方体和正方体
例1
教学长方体表面积的计算方法;
例2
教学正方形表面积的计算方法;
例1
根据方向和距离两个条件确定物体的具体位置,并能够解决一些实际问题;
例2
根据方向和距离,在图上绘出物体的具体位置,并能够解决一些实际问题,同时渗透比例尺的知识点;
例3
会看简单的路线图,能够用自己的语言简单说出路线,并能够画出路线图;
六下
比例(比例的应用)
例1
在认识比例尺的基础上将线段比例尺改成数值比例尺;
例2
教学计算圆环的面积;
例3
利用圆面积计算公式解决实际问题,使学生经历解决问题的一般过程,也巩固了圆面积的计算公式;
六下
圆柱与圆锥
圆柱
例3
教学圆柱表面积的概念,探究表面积的计算方法;推导出圆柱侧面积的计算方法;
例4
圆柱表面积公式的实际应用;
例5
教学圆柱体积公式的推导;
例6
圆柱体积公式的实际运用,也使学生明白圆柱形容器容积的计算方法;
例3
解决问题:用七巧板拼指定的图形;
二上
角的初步认识
例1
认识角、角的各部分的名称;
例3
认识直角;
例5
认识锐角和钝角;
例6
解决问题;
观察物体(一)
例1
辨认从不同位置看到的简单物体的形状;
例2
辨认从不同位置看到的简单几何体的形状;
例3
用推理解决简单的问题;
三上
长方形和正方形
例1
找四边形,感悟四边形的特征,有四条边和四个角;
例2
认识平移;
例3
认识旋转;
例4
解决实际问题;
五下
图形的变换
例1
引出两个图形成轴对称的概念,概括轴对称的特征;
例2
学会在方格纸上画出一个图形的轴对称图形;
例3
明确旋转的含义,探索图形旋转的特征和性质;
例4
学会在方格纸上把一个图形按顺时针或逆时针方向旋转90°;
六下
比例(图形的放大与缩小)
例4
能利用方格纸按一定比例将简单图形放大或缩小;
图形与位置
一上
位置
认识上、下、前、后、左、右的位置关系;
三下
位置与方向
例1
使学生认识东、南、西、北四个方向,能够用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向;
例2
使学生知道地图上的方向;
例3
使学生会看简单的路线图(四个方向),并能描述行走的路线;
例4
使学生认识东北、东南、西北、西南四个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向;
角的度量
例1
认识量角器,学会用量角器量指定度数的角;
例3
用量角器画指定度数的角;
平行四边形和梯形
平行和垂直
例2
学习画垂线的方法;学习画平行线的方法;
例4
学习画长方形和正方形;
平行四边形和梯形
学习画平行四边形和梯形的高;学习在电子图上画平行四边形和梯形;
五上
多边形的面积
探究平行四边形面积的计算公式;
例1
图形的认识
图形的运动
图形与几何
测量
图形与位置
图形的认识
一上
认识图形(一)
1 呈现熟悉实物图,引出4种立体图形;
2 以列表的方式对4种立体图形进行辨认区别;
1 若干个相同几何体的拼摆;
2 “看谁搭得又高又稳”活动;
一下
认识图形(二)
例1
初步认识长方形、正方形、平行四边形、三角形和圆;
例2
用同样的图形进行简单的拼组;
长方形和正方形
例3
结合具体的实例认识周长,并能简单测量简单图形的周长;
例4
探究长方形和正方形周长的计算方法;
例5
关于长方形和正方形周长公式的问题解决;
三下
面积
结合实例认识面积,体会统一面积单位的必要性,认识面积单位平方厘米、平方分泌、平方米;
例1
将长度单位与面积单位进行对比;
例2
探究长方形、正方形面积的计算方法;
例1
概括平行四边形的特征;认识平行四边形各部分名称;
例2
认识平行四边形的不稳定性;
例3
概括梯形的特征,认识梯形各部分的名称,认识直角梯形和等腰梯形;
例4
认识一些特殊四边形与一般四边形之间的关系;
四下
三角形
例1
结合生活情境和具体操作活动,抽象概括三角形的特征;识三角形各部分的名称及底和高的含义;学习用字母表示三角形;
通过实例了解体积的意义,认识常用的体积单位,能进行单位之间的换算,感受1立方厘米、1立方分米、1立方米的实际意义;
例1
计算长方体的体积,巩固长方体的体积计算公式;
例2
计算正方体的体积,巩固正方体的体积计算公式;
了解底面积的含义,统一长方体和正方体的体积公式,发现它们之间的联系;
例3
教学体积单位间的进率换算;
例3
长方形面积计算的应用;
例4
探究常用面积单位之间的进率;
认识面积单位“公顷”和“平方千米”,知道公顷与平方米、平方千米的单位换算;
四上
公顷与平方千米
例1
认识面积单位“公顷”,知道1公顷=1000平方米,建立1公顷的概念;
例2
认识面积单位“平方千米”,建立1平方千米的概念,知道平方千米与平方米、公顷之间的单位换算;
例5
认识米和厘米的关系;
例6
认识线段;
例7
学会用尺子画给定长度(限整厘米)的线段;
例8
解决问题,巩固学生建立的厘米和米的长度表象,培养学生对长度单位进行实际运用的能力;
角的初步认识
例2
画角;
例4
画直角;
三上
测量
例1
测量的结果不是整厘米或要求量得比较精确时引入毫米,发现厘米与毫米之间的关系,与1毫米厚度的实物作比照,建立1毫米的长度观念;
例2
教学圆锥体积公式的推导;
例3
圆锥体积公式的实际应用;
例2
联系生活实际,了解三角形的稳定性及其应用;
例3
创设具体问题情境,在探索活动中发现“三角形任意两边的和大于第三边”;
例4
在给三角形分类的活动中认识锐角三角形、直角三角形、钝角三角形以及等腰三角形、等边三角形的特征;
例5
归纳三角形的内角和是180°;
例6
通过拼、摆、画等活动,让学生进一步感受三角形的特征及三角形与四边形的联系与区别;
例2
引入分泌,发现分米与厘米、米之间的关系,建立1分米的长度观念;
例3
在测量实物的厚度或高度进行厘米与毫米、分米的单位换算;
例4
引入千米,通过实际测量、走一走等活动感受1千米的长度,进一步建立1千米的长度观念;
例5
千米与米的单位换算练习;
例6
探究用不同的方法估量家到学校的距离,培养学生的估量意识,渗透方法多样化的思想;
例5
使学生会看简单的路线图(八个方向),并能描述行走的路线;
四下
位置与方向
例1
根据方向和距离两个条件确定物体的位置;
例2
根据方向和距离,在图上绘出物体的位置;
例3
体会位置关系的相对性;
例4
描述并绘制简单的路线图;
五上
位置
例1
用数对表示具体情境中物体的位置;
例2
在方格纸上用数对确定位置;
六上
位置与方向(二)
例4
在解决实际问题的过程中进行体积单位的换算;
例5
在认识容积和容积单位的基础上,计算小汽车油箱的容积,巩固长方体容器容积的计算方法以及体积单位与容积单位之间的关系;
例6
用排水法来测量不规则物体体积;
六上
圆
圆周长例1
教学圆周长的计算,是对圆周长计算公式的实际应用;
圆面积例1
对圆面积计算公式的直接应用;
例2
关于比例尺的实际应用问题;
例3
选用合适的比例尺在图上画出平面图;
测量
二上
长度单位
例1
让学生体会统一长度单位的必要性,并使学生初步体会测量就是用“单位”量;
例2
认识厘米,了解厘米的符号,借助实际大小的厘米尺,通过比画、比较加深对1厘米长度的认识;