电磁学课后答案第四章

合集下载

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

#
)# ’" !" !# &
# )" & +%# !$ "" # +(" ($
+&" # +%# !& +%# !%" +"" #
#
#*"
)
+%#& #"
新概念物理教程·电磁学" " 第四章" 电磁介质" 习题解答
" " ! ! !" 平行板电容器两极板相距 #" $ !",其间放有一
层 ! # %" $ 的电介质,位置和厚度如本题图所示。已知极板 上面电荷密度为 "#$ # &" ’ $($ !(( $ % "% ,略去边缘效应,求:
(&)极板间电势差 *;
(!)两层介质中的电位移 +"
解:($) 设上极板带正电,面电荷密度为 "!% ,下极板带负电,面电
荷密度为 !"!% ,则可得
#
#
+ & "!% ,#
,$
&+ !$ !%
& "!% ,# !$ !%
,"
&+ !" !%
& "!% ; !" !%
从而
#
#
#
#
*
& ,$ $$
%," $"
!%
介质的电容器并联,于是有 % & %$ ’%%

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

习题 ! ! "
(")当金属板上带电面密度为 ("!% 时,两层介质的分界面上的极化 电荷面密度 "!);
(&)极板间电势差 *;
(!)两层介质中的电位移 +"
解:($) 设上极板带正电,面电荷密度为 "!% ,下极板带负电,面电
荷密度为 !"!% ,则可得
#
#
+ & "!% ,#
,$
&+ !$ !%
密度。由此
"!’
)!!·!
)!!·( ! !")!$ "
)!!$
![ !(
(
! !" ) ,]
{ } !
)!!$
!#
! !"
#!$ $
$ [ !" $ *( !# ! !" )(
]!$
!(
!
!
"
) [
#!$ $( !# ! !" )!$ !" $ *( !# ! !" )( ]# !#$
!
)! ( !# ! !" )#!$ $ [ !" $ *( !# ! !" )(
(%)极板间各处的电势( 设正极板处 ($ # $); (#)画 & !)、’ !)、( !) 曲线; (!)已知极板面积为 $" (( "% ,求电容 *,并与不加电
介质时的电容 *$ 比较。 解:(() 设本题图中电容器内部从左到右分成 !、
"、# 区。由介质中的高斯定理可解出
习题 ! ! !
从而
的介电常量是变化的,在一极板处为 !" ,在另一极板处为 !# ,其它处的介电 常量与到 !" 处的距离成线性关系,略去边缘效应。

电磁学第二版习题答案第四章

电磁学第二版习题答案第四章

j
δ
=
ρ I 3.14 ×10−8 × 20 = = 0.2 V 2 −3 2 m πR 3.14 × (10 )
4.3.5 铜的电阻温度系数为 4.3 ×10−3 / 0C ,在 0 0C 时的电阻率为 1.6 ×10−8 Ω ⋅ m ,求直径为 5mm、长 为 160km 的铜制电话线在 25 0C 时的电阻。
b a
ρ dx ρ 1 1 ρ (b − a) = ( − )= 2 4π r 4π a b 4π ab
ρ dx 4π r 2
4.3.4 直径为 2mm 的导线由电阻率为 3.14 ×10−8 Ω ⋅ m 的材料制成,当 20A 的电流均匀地流过该导 体时,求导体内部的场强。
解:根据 j = δ E ,得 E =
lρ ⎡ 1 1 ⎤ lρ − = π (b − a) ⎢ ⎣a b⎥ ⎦ π ab lρ l =ρ 2 s πa
当 a = b 时: R =
4.3.3 球形电容器内外半径为 a 和 b,两极板间充满电阻率为 ρ 的均匀物质,试计算该电容器的漏 电电阻。 解:对漏电电阻,其内部电极电位差,电流沿径向从高电位向低电位流过,则有: dR = 积分得: R = ∫ dR = ∫
(a) Rab = 1K Ω , (b) Rab = 4.5Ω (c) Rab = 1.2Ω (d) Rab = 7.4Ω (e) Rab = 5Ω (f) Rab = 1.5Ω (g) Rab = 14Ω
4.2.3 当附图中的 R1 为何值时 A、B 间的总电阻恰等于 R0? 解:由 R总 = R1 +
U = 0.01× 103 = 10(V ) , U 额 = RW =
2 P 100 = 0.01 × 100 = 0.01(W )

电磁场理论(柯亨玉)答案第四章 静电场的求解方法

电磁场理论(柯亨玉)答案第四章 静电场的求解方法

1 G(r , r ') ln r r ' C 2
其中 C 是常数,取决于电位参考点的选取。 上半空间 z 0 的格林函数:
1 1 1 G(r , r ') ( ) 4 R1 R2
式中: R1 [( x x' ) 2 ( y y' ) 2 ( z z ' ) 2 ]
s
第三类格林函数
1 1 ds' s r
G(r , r ')
1 2 G (r r ')

(G G) s 0
其中 、 为已知常数。 第三类静电边值问题的解
(r ) (r ')G(r , r ')dv'
v


f (r ')G(r , r ')
( A0 B0 ln r )(C0 D0 ) ( A r B r )[C cos() D sin()]

其中 0 ,是非整数。 球坐标系中的通解形式: 若 具有轴对称性,即 与 无关:
[ Al r l Bl r (l 1) ]pl (cos )
球内、外空间的格林函数
1
2
球外: G (r , r ')
1

1 1 a 1 ( ) 4 R1 d1 R2
式中: R1 [r 2 d12 2rd1 cos ]
2
2 R2 [r 2 d 2 2rd 2 cos ]
1
2
d2
a2 d1
球内: G(r , r ')
s

ds'

电磁学课后答案第四章

电磁学课后答案第四章
0
4-2 (张方奕 PB13203055) 解: (1)相互垂直两段对 O 无电磁贡献 = 即有 =− = = ⑵代入 得B + ∙ 0. 5 4 ∙ 0. 5 4 ( − ) = 8 4
I = 20 A, a = 30 mm , b = 50 mm
4 ´ 10 -5 T
4-3 (张方奕 PB13203055) 解: 磁感 B 可分为无限长导线与圆环 O 分别贡献 由安培定理 2 =
0
4-7(张方奕 PB13203055) 解: dQ e 由电流的定义, I= = 2 p r dt ( ) v 则, B = 4p
0
*
ev 2pI = 0 2 = 12.52T r 4p r
4-8 (余阳阳 PB13203083) 解:
Q × Rd × (2p R sin )( R sin ) 2 2 Br = ò 4p R 3 2p 0 2× [( R sin ) 2 + ( R cos - x ) 2 ] 2
又由匀速圆周运动规律得
mv 2 mv = Bqv r = r Bq mv mv = v0 × 0 v× Bq B0 q v= mv0 B v0 , r = B0 q BB0
4-15 (余阳阳 PB13203083) 解: (1) 由动量定理
B
dq ldt = mdv dt
Blq = mv
又由能量守恒
0
ln
b + r 2 + b2 a+ r +b
2 2
+
a r +n
2 2
-
b r + b2
2
4-5 (张方奕 PB13203055) 解: (1).圆环两半相抵消,B=0 (2).电阻之比为

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

电磁学赵凯华,陈熙谋第三版)第四章 习题及解答
新概念物理教程·电磁学! ! 第四章! 电磁介质! 习题解答
! ! ! ! "" 面积为 "" # !$ 的两平行金属板,带有等量异号电荷 #%# !",其
间充满了介电常量 ! $ $" # 的均匀电介质。略去边缘效应,求介质内的电场
强度和介质表面上的极化电荷面密度 "#%"
解:
&
$ "&#
$ ’# , (
密度。由此
"!’
)!!·!
)!!·( ! !")!$ "
)!!$
![ !(
(
! !" ) ,]
{ } !
)!!$
!#
! !"
#!$ $
$ [ !" $ *( !# ! !" )(
]!$
!(
!
!
"
) [
#!$ $( !# ! !" )!$ !" $ *( !# ! !" )( ]# !#$
!
)! ( !# ! !" )#!$ $ [ !" $ *( !# ! !" )(
(")电容器内各处的电场强度 % 的分布和电势差 &;
(#)介质表面的极化电荷面密度 "!’;
($)电容 (%( 它是真空时电容 (& 的多少倍?)
解:(
"

根据介质中的高斯定理可解出 ) *
%
*) ! !&
*

!
$ ! !&
+#


$ !+

电磁场与电磁波课后习题及答案--第四章习题解答

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a a ππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L ,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a a ππϕππ==∑L4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。

电磁场与电磁波(第四版)课后答案 第四章习题

电磁场与电磁波(第四版)课后答案  第四章习题

∫Байду номын сангаас
2π / ω
0
r 2650 cos (ωt − kz )dt = ez 1325 W / m 2
2
(3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。 r r r r r r P = − ∫ S en dS = − S ( −ez ) |z =0 + S ez |z =1 × 0.25
试求(1)瞬时坡印廷矢量 (2)平均坡印廷矢量 (3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。 解:(1)瞬时坡印廷矢量 r r r r S = E × H = ez 2650 cos 2 (ωt − kz ) W / m 2 (2)平均坡印廷矢量
r r ω S av = ez 2π
式中
k0 =

µ0
A/ m
λ0
试求(1)
c λ0 λ0 各点处的瞬时坡印廷矢量 z = 0, , 8 4
=
ω
C为真空的光速,λ0是波长。
(2)以上各点处的平均坡印廷矢量 解:(1)E和H的瞬时矢量为
r r r ex jE0 sin ( k0 z ) e jωt = −ex E0 sin ( k0 z ) sin (ωt ) V / m E ( z , t ) = Re r r ε0 r ε0 jωt H ( z , t ) = Re e y E0 cos ( k0 z ) e = ey E0 cos ( k0 z ) cos (ωt ) µ0 µ0 A/ m
s
= 2650 × 0.25 cos 2 (ωt ) − cos 2 (ωt − 0.42 ) = −270.2sin ( 2ωt − 0.42 )W
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 1时, Q 6p r 3
0
Br = 0
k < 1时, Q 6p R
0
Br =
(2) 该球的磁矩
m = ò p ( R sin ) 2
0
p
Q ( R × 2p R sin )d 4p R 2 × 2p
= =
Q
2
R
2
p
4 Q R 3
ò sin
0
3
d
4-9 (张加晋 PB13203136) 解: ⑴由圆电流轴线的场B =
2 3 2
2
3 2
2 a 2
2
a 2 =0
a R2 + +x 2 - R2 + - R2 a 2
2
5 2
5 2 a + R + +x 2 2
2
2
a +x 2
2
+5 a 2
2
a 2
2
=0
+5
=0
当 R=a 时
d 2B ,在 x=0 处 2 = 0 d x
2 d B dB 即 a=R 时, x =0 = 0 , dx 2 dx
x =0
=0
即 B 在为 a=R 时,x=0 附近 B 为常数。 4-10(张加晋 PB13203136) 解:磁矩的运动场: B =
u 0 m 3u 0 r 0 ( m × r 0) + 4p r 3 4p r05
因为地球半径运大于小电流环半径,地面磁极的场可视为磁矩与
ro 半径时磁矩 m
B=-
+
2 a + ×2 - x 3 2 R2 + a -x 2
2ቤተ መጻሕፍቲ ባይዱ5 2
=0
- a + 2x R2 + a +x 2
2 5 2
+
a - 2x R2 + a -x 2
2 5 2
=0
在 x=0 处,自然成立(a 可为任意值)
d 2B 现证: 2 dx

x=0
=0
a - R2 + +x 2
2
5 2
a + +x 2 R2 +
I I 2 Rd 2p ( L - R cos ) I I R cos d dF = 0 1 2 2p ( L - R cos ) dF =
0 1
F = 2ò
0
p
I I R cos d = 2p ( L - R cos )
0 1 2
0 1 2
II (
L L -R
2 2
- 1)
方向指向导线,即为吸引力 (2) 以过环心且与无限长直导线平行的直线为轴,所受磁力平行于纸面,谷堆此轴无 力矩。 4-17 (张加晋 PB13203136) 解: E
0
1 l 2 1 2 2 l +r 4
=
I l , 当l r时, 2p r l 2 + 4r 2 I B = 0 与安培环路定理结果一致 2p r
0
4-2 (张方奕 PB13203055) 解: (1)相互垂直两段对 O 无电磁贡献 = 即有 =− = = ⑵代入 得B + ∙ 0. 5 4 ∙ 0. 5 4 ( − ) = 8 4
4-11 (PB13000307 赵朴凝) 解: 与轴距离大于 r 的电流对磁场的贡献相互抵消 (与一个均匀带电球壳内部电场强 度为零相类比),与轴距离小于 r 的电流在 r 处的磁场等于位于轴线的电流在 r 处的磁场 (与一个均匀带电球壳外部的场强等于电荷全部集中于球心时的场强相 类比),因此与轴距离在 r 以内的电流是有效的,设四种情形下有效电流为 Ii,i=1,2,3,4,则 r I = I a I =I c −r I = I c −b I =0 再由B = 可得 μ I r 2π a μ I B = 2πr μ I c −r B = 2πr c −b B =0 B = 4-12 (余阳阳 PB13203083) 解: (1) 可将空心部分假想为通有大小相等, 方向相反的电流。电流密度等于管中的电流 密度(填补法),则圆柱轴线上的磁感应强度
I 2p - 2 0I × = 12R 2p 2R p
0
直线对 O 点的磁感应强度为
I B2 = 4p R cos
0
òp
p
2
+
2
-
sin d
=
I × tan 2p R
0
合磁场B = B1 + B 2 =
I tan 1- + 2R p p
0
4-7(张方奕 PB13203055) 解: dQ e 由电流的定义, I= = 2 p r dt ( ) v 则, B = 4p
0
-1
ò
1
(1 - t 2 )dt (1 - 2tk + k )
3 2 2
(k =
r ) R
积分可得:
Br =
Q 8p R
0
-1
ò
1
(1 - t 2 ) dt (1 - 2tk + k )
3 2 2
1+ k 2 [( k + 1) + ( k - 11)] k 0Q = { } 3 [( k + 1) + ( k - 11)] 2k 2 2 6 2p R k 2k
远场 B 值为
u 0 m 3u 0 R 3m 2u 0 m u 0 m + = = 4p r 3 4p R 5 4p R 3 2p r 3
u0m 2 ´ 3.14 ´ (6 ´ 106 )3 ´ 0.810-4 m= B= = 8.6 ´10 22 (安 × 米2 ) 3 -3 2p r 4p ´10
2
4-5 (张方奕 PB13203055) 解: (1).圆环两半相抵消,B=0 (2).电阻之比为
R R
=
1 2
=
2p -
=
I I
2 1
即有
B
0
I
1
(2p - )
1
4pR
B
2
= -
0
I
2
4pR
2
即有 B 1 +
B
= 0
4-6(张加晋 PB13203136) 解: 圆弧对 O 点的磁感应强度为
B1 =
2
1 (1 + )
i=
NI b-a
① 中心处:一个面电流环产生磁场
总磁场
B = ò db = ò
a
0
b
b
a
idr 2r i b NI b 0 idr = 0 ln = 0 ln 2r 2 a 2(b - a) a dB =
0
ir 2 dr ②轴上. dB = 2 r2 + z2
B = ò dB =
a b
又由匀速圆周运动规律得
mv 2 mv = Bqv r = r Bq mv mv = v0 × 0 v× Bq B0 q v= mv0 B v0 , r = B0 q BB0
4-15 (余阳阳 PB13203083) 解: (1) 由动量定理
B
dq ldt = mdv dt
Blq = mv
又由能量守恒
IR 2
3
2( R 2 + Z 2 ) 2
= 1.1´10-12 N
为排斥力 4-22(PB13000307 赵朴凝) 解:磁铁的磁场来自于内部的分子环形电流,因此只要推出两个磁矩分别为 m1 和 m2 的载流线圈 1 与线圈 2 间的作用力与 1/r4 成正比即可。 先研究线圈 1 对线圈 2 的作用力,当两线圈相距较远时,线圈 1 在线圈 2 处产生 的磁场为 3μ ( ∙ )∙ = − 4πr 4πr 其中 r 为线圈 2 相对线圈 1 的位置矢量。磁矩为 m2 的线圈在磁场 B 中的能量为 W = ∙ 线圈 2 受线圈 1 的力可通过对能量求梯度求得(应用虚功原理) : F = −∇W 因此 3μ 3μ (5m m − )+ F = (m +m ) 4πr 4πr 可见作用力随距离变化呈 1/r4 型衰减。 4-23 (马超 PB13203072) 解: (1)
( )
, d 为场点距 O 的距离,方向满足右手定则。
u 0 IR 2 a 2 R2 + +x 2
2 3 2
利用叠加原理
B x = + u 0 IR 2 a 2 R2 + -x 2
2 3 2
B 的方向沿轴线向右。 ⑵
dB = 0时 dx
2 a - ×2 + x 3 2 R2 + a +x 2
2 5 2
(3) 由数据以及(1)和(2)中所得的公式,得
4p ´10-7 ´ 20 ´ 0.52 B0 = T = 2 ´10-6 T -3 2 2 2p ´ 5 ´10 ´ (10 - 0.5 )
4p ´10 -7 ´ 20 ´ 5 B = T = 2 ´10-4 T 2p ´ (10 2 - 0.52 ) ´10-3
I = 20 A, a = 30 mm , b = 50 mm
4 ´ 10 -5 T
4-3 (张方奕 PB13203055) 解: 磁感 B 可分为无限长导线与圆环 O 分别贡献 由安培定理 2 =
= 又圆环 = = 4-4(张加晋 PB13203136) 解: 面电流 +
2 = 2
∙ 2 4 =
' 0
4-13 (张加晋 PB13203136) 解:
Fe =
e2
2
4pe 0 r Fm = qvB = 3.5 ´ 10 -5 N Fm 400 Fe
相关文档
最新文档