解析几何中的定点、定值问题

合集下载

(完整)解析几何中的定点和定值问题

(完整)解析几何中的定点和定值问题

解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。

此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。

考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。

一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

例1、已知A 、B 是抛物线y 2=2p x (p 〉0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,解析: 设A (121,2y p y ),B (222,2y py ),则212tan ,2tan y py p ==βα,代入1)tan(=+βα 得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。

例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C 的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y ,则1228214k x x k +=-+,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m 〉0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。

解析几何中的定点、定值与最值问题解法揭秘

解析几何中的定点、定值与最值问题解法揭秘
地最新模拟试题给予剖析、小结归纳 ,并且给出相应
定值 问题 ,通过特殊探索法不但能够确定出定点、定 值 ,还可 以为我们提供解题 的线索.
例 1 已知抛物线 y=p ( > )问 : .  ̄Zxp O , 在轴 的正半 轴
上是否存在一点 。 使得过 M点 的抛 物线 的任 意一 条 弦 P 都有 P0 2 ( 1尸 D为坐标原点 )请说明理 由. = ?
题 .从 而找到解决 问题 的突破 E. ,有许 多定 点 、 1 另外
直线 A P的方程 为 , j (+)令 x 2 / , y , = x 2, = 、 2 则 =
高中 21 0 2年第 ’嬲
数攀有数

xo z + 5
即 E2 (




蔚 ・ =华 (
, ) , 。 ( ) 一 ・。 y ) 2 ( 。2 =
1 1
明若满 足题设条 件 的点 存在 , 其坐标 只能是 ( ,
参数表示 , 然后计算出所需结果与该参数无关 : 也可 将变动元 素置于特殊状态下 探求 出定点 、定值 ,然 后给 以证 明. 注意的是 ,解 析几何 中的定 点 、定 值得
值问题与一般几何证明不同 .它 的结论中没有确定 的

分析 : 这是一道 与探索性相结合的定点 问题 . 过 通 阅读题意我们发现几个关 键词 :正半轴 ” “ “ ,任意一 条 弦” 抛物线 y=p (> ) , =Zx p 0 的开 口向右 , 先假设 满足 题 设 条件的点 存在 , 并求 出 的坐标 , 然后证 明过 点的任意一条直 弦 PP 都有 /PO 2 也就是先 证 l2 - ,P=" I T,
x #-
0 , PP是过点 ( 0 的任意一条弦 , )设 I 2 2 ) p, 其斜率为 k , 则 P 的 方 程 为 y k( 一 ) 代 入 = p = , z 得 J 一 】 }

难点2.10 解析几何中的定值、定点和定线问题 (解析版)

难点2.10 解析几何中的定值、定点和定线问题  (解析版)

解析几何中的定值、定点、定线问题仍是高考考试的重点与难点,该类问题知识综合性强,方法灵活,对运算能力和推理能力要求较高,因而成为了高中数学学习的重点和难点.主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定值、定点、定线问题,试题难度较大.定点、定值、定线问题都是探求"变中有不变的量".因此要用全面的、联系的、发展的观点看待并处理此类问题.从整体上把握问题给出的综合信息,并注意挖掘问题中各个量之间的相互关系,恰当适时地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法. 在解答这类问题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查学生逻辑思维能力、知识迁移能力和运算求证能力的一道亮丽的风景线,真正体现了考试大纲中“重知识,更重能力”的指导思想.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用.1解析几何中的定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式出现,特珠化方法往往比较奏效.例1【百校联盟2018届一月联考】已知点()0,2F ,过点()0,2P -且与y 轴垂直的直线为1l , 2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M .(1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m-=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.思路分析:(1)根据抛物线的定义可得点M 的轨迹,根据待定系数法可得轨迹方程.(2)设直线AB 的方程为y kx b =+,与抛物线方程联立消元后可得AB 中点()24,4Q k k b +的坐标为.同样设出切线方程y kx t =+,与抛物线方程联立消元后可得切点C 的坐标为()24,2k k ,故得CQ ⊥ x 轴.于是点评:圆锥曲线中求定值问题常见的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)由题意得到目标函数,直接通过推理、计算,并在计算推理的过程中消去变量,从而得到目标函数的取值与变量无关,从而证得定值.定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现. 定值问题的主要处理方法是函数方法,首先,选择适当的量为变量,然后把证明为定值的量表示为上述变量的函数(可能含多元),最后把得到的函数解析式化简,消去变量得到定值.消去变量的过程中,经常要用到点在曲线上进行坐标代换消元.有时先从特殊情形入手,求出定值,再对一般情形进行证明,这样可使问题的方向更加明确.另外关注图形的几何性质可简化计算.学*科网2解析几何中的定点问题定点问题是动直线(或曲线)恒过某一定点的问题,一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.定点问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点问题的证明.难度较大.定点问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.解析几何中的“定点”问题一般是在一些动态事物(如动点、动直线、动弦、动角、动轨迹等)中,寻求某一个不变量——定点,由于这种问题涉及面广、综合性强.例2【河南省中原名校2018届第五次联考】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,上顶点为G ,直线FG 与直线30x y -=垂直,椭圆E 经过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆E 的标准方程;(2)过点F 作椭圆E 的两条互相垂直的弦,AB CD .若弦,AB CD 的中点分别为,M N ,证明:直线MN 恒过定点.思路分析:(1)根据直线FG 与直线30x y -=垂直可得3b c =,从而得到2243a b =,再由点31,2P ⎛⎫ ⎪⎝⎭在椭圆上可求得22,a b ,即可得椭圆的方程.(2)当直线AB CD ,的斜率都存在时,设AB 的方程为()10x my m =+≠,与椭圆方程联立消元后根据根据系数的关系可得点M 的坐标,同理可得点N 坐标,从而可得直线MN 的方程,通过此方程可得直线过定点4,07⎛⎫ ⎪⎝⎭.然后再验证当直线AB CD 或的斜率不存在时也过该定点.点评:本题考查椭圆的标准方程、椭圆的几何性质、直线与椭圆的位置关系、基本不等式,属难题;解决圆锥曲线定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 定点定值问题的实质为等式恒成立,方法为待定系数法.定点问题,关键在于寻找题中的已知量、未知量间的平行、垂直关系或是方程、不等式,然后将已知量、未知量代入上述关系,通过整理、变形转化为过定点的直线系、曲线系的问题来解决.定值问题,关键在于选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理等方法导出所求定值关系式需要的表达式,并将其代入定值关系式,化简整理求出结果. 圆锥曲线中的定点问题是高考中的常考题型,常常把直线、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是数形结合思想、分类讨论思想的考查.求解的方法有以下两种:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点符合题意.学*科网3解析几何中的定线问题 定线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.例3在平面直角坐标系xOy 中,过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.思路分析:(Ⅰ)设出过点()2,0C 的直线方程,与抛物线方程联立消去未知数x ,由根与系数关系可得128y y =-为定值;(Ⅱ)先设存在直线l :a x =满足条件,求出以AC 为直径的圆的圆心坐标和半径,利用勾股定理求出弦长表达式222124(1)84r d a x a a -=--+-,由表达式可知,当1a =时,弦长为定值.点评:本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、直线与圆的位置关系,属难题;解决圆锥曲线定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 学*科网综上所述:解决圆锥曲线问题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.解析几何中的定值问题是指某些几何量、线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 证明直线过定点的解题步骤可以归纳为:一选、二求、三定点.具体操作程序如下:一选:选择参变量.需要证明过定点的直线往往会随某一个量的变化而变化,可选择这个量为参变量(当动直线牵涉的量比较多时,也可以选择多个参变量). 二求:求出动直线的方程.求出只含上述参变量的动直线方程,并由其他辅助条件减少参变量的个数,最终使动直线的方程的系数中只含有一个参变量. 三定点:求出定点的坐标.不妨设动直线的方程中含有变量,把直线方程写成的形式,然后解关于的方程组得到定点的坐标. 解这类问题时,需要有较强的代数运算能力和图形识别能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整性.。

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题解析几何中定点定值问题例1 已知椭圆)1(1222>=+a y ax 的上顶点为M (0,1),过M的两条动弦MA 、MB 满足MA ⊥MB 。

对于给定的实数)1(>a a ,证明:直线AB 过定点。

解:由MA MB ⋅=u u u r u u u r知MA MB ⊥,从而直线MA 与坐标轴不垂直,故可设直线MA 的方程为1y kx =+,直线MB 的方程为11y x k=-+ 将1y kx =+代入椭圆C 的方程,整理得 2222(1)20a k x a kx ++=解得0x =或22221a kx a k -=+,故点A 的坐标为222222221(,)11a k a k a k a k--++同理,点B 的坐标为22222222(,)a k k a k a k a -++ 知直线l 的斜率为2222222222222211221k a a k k a a k a k a kk a a k ---++--++=221(1)k a k-+ 直线l 的方程为22222222212()(1)k a k k a y x a k k a k a --=-++++,即222211(1)1k a y x a k a --=-++∴直线l 过定点2210,1a a ⎛⎫-- ⎪+⎝⎭例3 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=a 共线.(1)求椭圆的离心率;即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴.0329233)(3422222121=+-=++-=c c c c c x x x x又222222212133,33b y x b y x=+=+又,代入①得 .122=+μλ故22μλ+为定值,定值为1.例4 设21,F F 是椭圆134:22=+y x C 的左右焦点,B A ,分别为左顶点和上顶点,过右焦点2F 的直线l 交椭圆C 于N M ,两点,直线AN AM ,分别与已知直线4=x 交于点Q P ,,试探究以PQ 为直径的圆与直线l 的位置关系.高二数学作业(13)1.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N,两点,2F 为其右焦点,则22MFNF MN+-的值为______.82.AB 是椭圆22221(0)x y a b a b +=>>中不平行于对称轴的一条弦,M是AB 的中点,O 是椭圆的中心,OMABk k ⋅=______22ab -3.在椭圆2212x y +=上,对不同于顶点的任意三个点,,M A B ,存在锐角θ,使OB OA OM θθsin cos +=.则直线OA 与OB 的斜率之积为 . 12-4.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是 椭圆5.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:当直线ON 垂直于x 轴时,|ON|=1,|OM|=22,则OA B P α (第4到直线MN 的距离为33.当直线ON 不垂直于x 轴时, 设直线ON 的方程为kxy =(显然22||>k ),则直线OM 的方程为x y k1-=.由⎩⎨⎧=+=1422y x kxy ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k kON ++=.同理121222||-+=k k OM .设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+,所以3133||1||1122222==+=++k k ON OM d ,即d=33.综上,O 到直线MN 的距离是定值.6.如图,在平面直角坐标系xOy 中,椭圆E :22143x y +=若点A ,B分别是椭圆E 的左、右顶点,直线l经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l于点.M 设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.证明:直线BP 的斜率为1212y kx =-,直线m 的斜率为112mx ky -=,则直线m 的方程为112(2)x y yx y --=-,111101111222(2)4(2)2x x x y y x y x y y y x ---=-+=-++ABMPOlxym2211111122(4)4(2)x x y x y x y --+=++2211111122(4)123(2)x x x x y x y --+-=++=111122x x x y y --+=112(1)xx y-+, 所以直线m 过定点(1,0)-.7.已知椭圆)0(12222>>=+b a by a x 的离心率为22,且过点)21,22(P ,记椭圆的左顶点为.A(1)求椭圆的方程;(2)设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求ABC ∆面积的最大值;(3)过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E两点,且221=k k ,求证:直线DE 恒过一个定点.高二数学教学案(13)例1 已知椭圆)1(1222>=+a y ax 的上顶点为M (0,1),过M的两条动弦MA 、MB 满足MA ⊥MB 。

解析几何中的定点、定值问题教案(定稿)

解析几何中的定点、定值问题教案(定稿)

解析几何中一类定点和定值的问题【教学目标】(l)通过圆的直径的一个简单性质类比到椭圆,学生能通过自主探究得到椭圆的直径的一个性质;(2)会从不同视角证明这个性质;(3)能证明性质成立的充要条件,并能利用性质解决相关问题;(4)通过问题解决领悟其中蕴涵的数学思想方法,在探究与发现中体验数学之美.【教学难、重点】解题思路的优化.【教学方法】探究式、讨论式【教学过程】一、回归问题背景,追溯题根本质。

选修2-1课本(人教版)第41页上例3的一个问题:设点A ,B 的坐标分别为(-5,0)(5,0),直线,AM 、BM 相交于点M ,且它们的斜率之积为94-,求点M 的轨迹方程。

(斜率之积为94,则为教材55页探究问题) 请同学们思考:问题1 设点A ,B 的坐标分别为(-2,0)(2,0),直线AM 、BM 相交于点M ,且它们的斜率之积为41-(或41),求点M 的轨迹方程。

答案1422=+y x (y ≠0)(第41页例2)(或1-422=y x (y ≠0)) 你本题采用直接法求轨迹方程,最终发现动点M 的轨迹是双曲线,而且注意到斜率这样一个条件,因此要剔除x 轴上的点,非常好!请同学们继续思考,如果将直线,AM 、BM 的斜率乘积改为-1,则定点M 的轨迹如何? (为了了解学生对此方法的掌握情况,教师指定一名学生回答)变式:设点A ,B 的坐标分别为(-2,0)(2,0),直线AM 、BM 相交于点M ,且它们的斜率之积为-1,求点M 的轨迹方程。

答案422=+y x (y ≠0)(可用几何法)通过以上问题,你有什么发现?学生讨论交流后提出了发现:设点A ,B 的坐标分别为(-2,0)(2,0),直线,AM 、BM 相交于点M ,且它们的斜率之积为k ,求点M 的轨迹方程。

的轨迹可以是直线、圆、椭圆、双曲线等等(剔除某些点)设计意图 作为本节课的引入,问题直接源自课本,入口浅,能有效激发学生兴趣,为后续学习奠定情感基础;另一方面也统领本节课,为接下来的学习埋下伏笔,留下悬念,有利于学生主动去探索研究,可谓寓意深刻值得一提的是,问题提问注意了差异性教学,有些问题鼓励学生自己回答(素质教好学生);有些问题则指定学生回答(如一名中等生,学困生)二、 提出目标 明确任务什么是定值问题:在变化过程中存在不变量的问题,今天研究解析几何中的定值问题.思考一问题1.设点A ,B 的坐标分别为(-2,0)(2,0),M (与A,B 不重合)为圆422=+y x 的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?问题2.点A,B 为椭圆1422=+y x 长轴上的两个顶点.M (与A,B 不重合)为椭圆的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?问题3.点A,B 为双曲线1-422=y x 实轴上的两个顶点.M (与A,B 不重合)为双曲线的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?通过几何画板探究结论,要求学生观察完后进行证明。

探究解析几何中的定点、定值问题

探究解析几何中的定点、定值问题

解题篇经典题突破方法高考数学2021年4月探究解析几何中的定点.定值问题■浙江省湖州市第二中学曹亚奇定点与定值问题是解析几何中的高频考点。

此类问题定中有动,动中有定,并常与轨迹问题、曲线系问题等相结合,综合性强,解法灵活多变。

求解这类问题时,需要有较强的代数运算能力和图形识别能力,要能合理猜想并仔细推理论证,对熟练运用所学知识分析问题、解决问题的能力要求较高,所以掌握这类问题的通性通法是我们学习的重中之重。

一.直线的定点问题我们知道,若一条直线经过一定点,往往表达成如下形式:(1)夕=也7+1;(2)夕=足2—冷;(3)夕一1=忌(工一1);(4)Cm—1)rr+(2?n—1)»=?n—5。

于是我们最终需要表达的直线的方程是含有一个参数,那又该如何做到呢?下面让我们以一道经典习题为例,从“线设”、“点设”、“共线”等三个视角入手,寻求直线中定点问题的通性通法。

侧f(武汉市2020届高中毕业生质量检测第19题)已知抛物线r iy2=2p^ S>0)的焦点为F,P是抛物线。

上一点,且在第一象限,满足FP=(2,2/3)o(1)求抛物线r的标准方程。

(2)已知过点A(3,-2)的直线交抛物线r于M,N两点,经过定点B(3,—6)和M点的直线与拋物线「交于另一点试问:直线NL是否恒过定点?若过定点,求出该定点;若不过定点,请说明理由。

解析:(1)抛物线r的标准方程为y2= 4工。

(过程略)(2)解法1:设M(?“),则直线MN:工一护T-33=上+2(夕+2),与抛物线方程y2=4鼻联立竹*f2护—122t2-\~X2t,r并化简得:y y-=0,故y N=t2_12_2e+12_“+6\27+2"—t=—匚卡-,心=(石巨),即N((爭)1—帚)。

同理直线辺山—3 *2_1O=17+24^+6),与抛物线方程宁=4工联立,得叫峯广-罟)。

于是直线N“+6^+122z+122e+12_e+6t~\~2((e+6)2、…i+2=(卄6)2(3£+6尸严―q+2)2丿,化(卄2)2—(卄6)2简整理得’=_(霁+霁寻»_3,所以直线NL过定点(一3,0)。

解析几何中的定点、定值问题教案

解析几何中的定点、定值问题教案

解析几何中的定点和定值问题【教学目标】学会合理选择参数(坐标、斜率等)表示动态几何对象和几何量,探究、证明动态图形中的不变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中作用.【教学难、重点】解题思路的优化.【教学方法】讨论式【教学过程】一、基础练习1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_____________________.2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ⋅=______________.3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, 的垂直平分线交x 轴于N ,则_______.4,F A ,是其左顶点和左焦点,P 是圆222b y x =+ 上的动点,若PF=常数,则此椭圆的离心率是 . 二、典型例题例1、如图,椭圆C : 22142x y +=的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点. 试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例2、已知离心率为e 的椭圆C (1)e ,和()20,. (1) 求椭圆C 的方程;(2) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过动点(,0),(22)E m m -<<,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值?证明你的结论.例3、已知椭圆E 的中心在原点,焦点在x 轴上,1,离心率为e. ﹙1﹚求椭圆E 的方程.﹙2﹚过点(1,0)作直线l 交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,使MP MQ 为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由.三、回顾反思1A 、B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________.2、已知P B 的任意一点,记直线P A ,PB 3是椭圆的左右顶点,P 为椭圆上不同于AB 的动点,直线PA,PB 的倾斜角分别为,αβ,则= .4、如图所示,已知椭圆C C 上任取不同两点A ,B ,点A 关于x 轴的对称点为'A ,当A ,B AB 经过x 轴上的定点T (1,0),则直线'A B直线交椭圆于于,M N 两点,令 6、已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.7、已知椭圆C: 2222x y a b+=1(a >0,b >0A (1在椭圆C 上. (I)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满 足此圆与l 相交于两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之 积为定值?若存在,求此圆的方程;若不存在,说明理由.8、已知椭圆C 1:22221(0)y x a b a b+=>>,且过定点M (1. (1)求椭圆C 的方程;(2)已知直线l :1()3y kx k =-∈R 与椭圆C 交于A 、B 两点,试问在y 轴上是否存在定点P ,使得以弦AB 为直径的圆恒过P 点?若存在,求出P 点的坐标,若不存在,说明理由.。

解析几何中定值和定点问题

解析几何中定值和定点问题

解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的定点和定值问题【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用.【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_________.【答案】(1,0)【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=.注:部分优秀学生可由200x x y y r += 公式直接得出.令440x y -=⎧⎨=⎩ 得定点(1,0).2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ⋅=______________. 【答案】-2【解析】设00(,),(,)P x y A x y ,则(,)Q x y --220001222000y y y y y y k k x x x x x x -+-⋅=⋅=-+-,又由A 、P 均在椭圆上,故有:2200222121x y x y ⎧+=⎪⎨+=⎪⎩,两式相减得2222002()()0x x y y -+-= ,220122202y y k k x x-⋅==--3、过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点,AB 的垂直平分线交x 轴于N ,则_______.1=24e【解析】设直线AB 斜率为k ,则直线方程为()3y k x =-,与椭圆方程联立消去y 整理可得()22223424361080k x k x k +-+-=,则221212222436108,3434k k x x x x k k-+==++, 所以1221834ky y k -+=+,则AB 中点为222129,3434k k k k ⎛⎫- ⎪++⎝⎭. 所以AB 中垂线方程为22291123434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 令0y =,则22334k x k =+,即223,034k N k ⎛⎫ ⎪+⎝⎭, 所以222239(1)33434k k NF k k +=-=++.()2236134k AB k+==+,所以14NF AB =.4、F A ,是其左顶点和左焦点,P 是圆222b y x =+上的动点,若PAPF=常数,则此椭圆的离心率是【答案】e =215-【解析】因为PAPF=常数,所以当点P分别在(±b,0)时比值相等,2b ac=,又因为222b a c=-,所以220a c ac--=同除以a2可得e2+e-1=0,解得离心率e=215-.二、典例讨论例1、如图,在平面直角坐标系xOy中,椭圆C:22142x y+=的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)请证明你的结论.分析一:设PQ 的方程为y kx =,设点()00,P x y (00x >),则点()00,Q x y --.联立方程组22,24ykx x y =⎧⎨+=⎩消去y 得22412x k =+.所以0x=0y .所以直线AP的方程为)2y x =+.从而M ⎛⎫ ⎝同理可得点N ⎛⎫ ⎝. 所以以MN 为直径的圆的方程为2(x y y +=整理得:2220x y y +--=由22200x y y ⎧+-=⎨=⎩,可得定点(0)F分析二:设P (x 0,y 0),则Q (﹣x 0,﹣y 0),代入椭圆方程可得220024x y +=.由直线PA 方程为:00(2)2y y x x =++,可得0020,2y M x ⎛⎫⎪+⎝⎭,同理由直线QA 方程可得0020,2y N x ⎛⎫ ⎪-⎝⎭,可得以MN 为直径的圆为2000022022y y x y y x x ⎛⎫⎛⎫+-⋅-= ⎪ ⎪+-⎝⎭⎝⎭,整理得:2220020002240224y y y x y y x x x ⎛⎫+-++= ⎪+--⎝⎭由于220042x y -=-,代入整理即可得2200204204x y x y y x ⎛⎫+--= ⎪-⎝⎭此圆过定点(0)F . 分析三: 易证:2212AP AQb k k a =-=-,故可设直线AP 斜率为k ,则直线AQ 斜率为12k-. 直线AP 方程为(2)y k x =+,从而得(0,2)M k ,以12k -代k 得10,N k ⎛⎫- ⎪⎝⎭故知以MN 为直径的圆的方程为21(2)()0x y k y k+-+=整理得:2212(2)0x y k y k+-+-=由22200x y y ⎧+-=⎨=⎩,可得定点(0)F . 分析四、设(0,),(0,)M m N n ,则以MN 为直径的圆的方程为2()()0x y m y n +--= 即22()0x y m n y mn +-++= 再由221=2AP AQAM AN b k k k k a =-=-得2mn =-,下略例2、已知离心率为e 的椭圆C (1)e ,和()20,. (1) 求椭圆C 的方程;(2) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过点(1,0)E ,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值证明你的结论.解析:(1)由题意:22222111a e e b a b ⎧=⎧=⎪⎪⇒⎨⎨+=⎪⎪=⎩⎩所以椭圆C 的方程为2214x y +=.(2) 设AB 方程为(1)y k x =-,11(,)A x y ,22(,)B x y ,则MN 方程为y kx =-又设33(,)M x kx -,33(,)N x kx -1323132313231323(1)(1)AM BN y kx y kx k x kx k x kx k k x x x x x x x x +--+--+=+=+-+-+则整理得:[]132323131323(1)()(1)()()()AM BN k x x x x x x x x k k x x x x +-++---+=-+212312132322()()()AM BN k x x x x x k k x x x x ⎡⎤+-+⎣⎦+=-+ ①由22(1)44y k x x y =-⎧⎨+=⎩消元整理得:2222(41)8440k x k x k +-+-=, 所以22121222844,4141k k x x x x k k -+==++ ②又由2244y kxx y =-⎧⎨+=⎩消元整理得: 22(41)4k x +=,所以232441x k =+ ③将②、③代入①式得:0AM BN k k +=. 例2(变式)、已知离心率为e 的椭圆C (1)e ,和()20,.(3) 求椭圆C 的方程;(4) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过定点(,0),(22)E m m -<<,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值证明你的结论.解析:(3)由题意:222222111a e e b a b ⎧=⎧=⎪⎪⇒⎨⎨+=⎪⎪=⎩⎩所以椭圆C 的方程为2214x y +=.(4) 设AB 方程为()y k x m =-,11(,)A x y ,22(,)B x y ,则MN 方程为y kx =-又设33(,)M x kx -,33(,)N x kx -1323132313231323()()AM BN y kx y kx k k x x x x k x m kx k x m kx x x x x +-+=+-+-+--=+-+则整理得:[]132323131323()()()()()()AM BN k x x m x x x x m x x k k x x x x +-++---+=-+212312132322()()()AM BN k x x x m x x k k x x x x ⎡⎤+-+⎣⎦+=-+ ①由22()44y k x m x y =-⎧⎨+=⎩消元整理得:22222(41)8440k x k mx k m +-+-=, 所以222121222844,4141k m k m x x x x k k -+==++ ②又由2244y kx x y =-⎧⎨+=⎩消元整理得:22(41)4k x +=,所以232441x k =+ ③将②、③代入①式得:0AM BN k k +=.三、课外作业1、已知椭圆22+142x y =,A 、B是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________. 【答案】(0,0) 【解析】试题分析:设(2,),M t 则:(2)4tAM y x =+,与椭圆方程联立消y得2222(8)44320t x t x t +++-=,所以221628P t x t -=+,288P ty t =+,因此22282816228BPtt k t tt +==---+,即1BP OMk k =-,点Q 的坐标为O (0,0)2、已知PA 、右顶点B 的任意一点,记直线PA ,PB 的斜率分别为1212,,k k k k ⋅则的值为 . 【答案】13- 【解析】设(,)P x y ,因为P 在椭圆上,所以3、已知椭圆22221(0)x y a b a b+=>>的离心率e =12,A,B 是椭圆的左右顶点,P为椭圆上不同于AB 的动点,直线PA,PB 的倾斜角分别为,αβ,则cos()cos()αβαβ+-= .【答案】7 【解析】试题分析:因为A,B 是椭圆的左右顶点,P 为椭圆上不同于AB 的动点,22PA PBb k k a∴⋅=-2222211132244c a b b e a a a -=∴=∴=∴=,2234PA PB b k k a ∴⋅=-=-,31cos()cos cos sin sin 1tan tan 473cos()cos cos sin sin 1tan tan 14αβαβαβαβαβαβαβαβ++--====-++- 4、如图所示,已知椭圆C C 上任取不同两点A ,B ,点A 关于x 轴的对称点为'A ,当A ,B 变化时,如果直线AB 经过x 轴上的定点T (1,0),则直线'A B 经过x 轴上的定点为________.【答案】(4,0)【解析】设直线AB 的方程为x =my +1,由22141x y x my ⎧+=⎪⎨⎪=+⎩得(my +1)2+4y 2=4,即(m 2+4)y 2+2my -3=0.记A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1),且y 1+y 2=-224mm +,y 1y 2=-234m +,当m ≠0时,经过点A′(x 1,-y 1),B(x 2,y 2)的直线方程为121y y y y ++=121x x x x --.令y =0,得x =2121x xy y -+y 1+x 1=2121my my y y -+y 1+my 1+1=2212112121my y my my y my y y -++++1=12212my y y y ++1=2232424m m m m ⋅+-+-+1=4,所以y =0时,x =4. 当m =0时,直线AB 的方程为x =1,此时A′,B 重合,经过A′,B 的直线有无数条,当然可以有一条经过点(4,0)的直线.当直线AB 为x 轴时,直线A ′B 就是直线AB ,即x 轴,这条直线也经过点(4,0).综上所述,当点A ,B 变化时,直线A ′B 经过x 轴上的定点(4,0).5、 过椭圆的右焦点2F 的直线交椭圆于于,M N 两点,令【解析】试题分析:不失一般性,不妨取MN 垂直x 轴的情况,此时MN :x=1,联立221431x y x ⎧+=⎪⎨⎪=⎩,得M (1,32),N (1,-32),∴m=n=32,∴34mn m n =+6、已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点若经过,求出定点的坐标;若不经过,请说明理由.解析:(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==所以a =2b =.所以椭圆C 的方程为22184x y +=.解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①因为点(2B 在椭圆C 上,所以22421a b +=. ②由①②解得,a =2b =.所以椭圆C 的方程为22184x y +=.(Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y=⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =0y =.所以直线AE的方程为y x =+.因为直线AE,AF分别与y轴交于点M,N,令0x=得y=,即点M⎛⎝.同理可得点N ⎛⎫⎝.所以MN==设MN的中点为P,则点P的坐标为0,Pk⎛⎫-⎪⎪⎝⎭.则以MN为直径的圆的方程为22x y⎛++=⎝⎭2,即224x y yk++=.令0y=,得24x=,即2x=或2x=-.故以MN为直径的圆经过两定点()12,0P,()22,0P-.解法二:因为椭圆C的左端点为A,则点A的坐标为()-.因为直线(0)y kx k=≠与椭圆22184x y+=交于两点E,F,设点00(,)E x y,则点00(,)F x y--.所以直线AE的方程为y x =+.因为直线AE 与y 轴交于点M ,令0x =得y =M ⎛⎫⎝.同理可得点N ⎛⎫⎝.所以020168yMN x ==-.因为点00(,)E x y 在椭圆C 上,所以2200184x y +=. 所以08MN y =. 设MN 的中点为P ,则点P的坐标为000,P y ⎛⎫-⎪ ⎪⎝⎭. 则以MN为直径的圆的方程为2200x y y ⎛⎫++= ⎪ ⎪⎝⎭2016y .即220+x y y y +=4. 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.解法三:因为椭圆C 的左顶点为A ,则点A 的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--. 所以直线AE 的方程为y x =+.因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫ ⎪+⎝⎭.同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.所以2sin 2sin 4cos 1cos 1sin MN θθθθθ=-=+-.设MN 的中点为P ,则点P 的坐标为2cos 0,sin P θθ⎛⎫-⎪⎝⎭. 则以MN 为直径的圆的方程为222cos sin x y θθ⎛⎫++= ⎪⎝⎭24sin θ, 即224cos 4sin x y y θθ++=. 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.7、已知椭圆C: 2222x y a b+=1(a >0,b >0)的离心率为2,点A (1,2)在椭圆C 上.(I)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交于两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之积为定值若存在,求此圆的方程;若不存在,说明理由.(Ⅰ)解:由题意,得ca =222a b c =+, 又因为点A 在椭圆C 上,所以221314a b+=, 解得2a =,1b =,c , 所以椭圆C的方程为1422=+y x .(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225xy +=.证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)xy r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=.由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k ,因为直线l 与椭圆C 有且仅有一个公共点, 所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+.由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, 则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221kmx x k -+=+,2y x b =-+, 设直线1OP ,2OP 的斜率分别为1k ,2k ,所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++===222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+,将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r -=-,即25r =,验证符合题意.所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. 当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 8、已知椭圆C 1:22221(0)y x a b a b +=>>,且过定点M (1).(1)求椭圆C 的方程;(2)已知直线l :1()3y kx k =-∈R 与椭圆C 交于A 、B 两点,试问在y 轴上是否存在定点P ,使得以弦AB 为直径的圆恒过P 点若存在,求出P 点的坐标,若不存在,说明理由.(1)解:由已知222222252511142c e a a b c a b a b ⎧==⎪⎧=⎪⎪⎪+=⇒⎨⎨⎪⎪=+=⎩⎪⎪⎩∴椭圆C 的方程为2224155y x +=(2)解:由221324155y kx y x ⎧=-⎪⎪⎨⎪+=⎪⎩得:229(24)12430k x kx +--= ①设A (x 1,y 1),B (x 2,y 2),则x 1、x 2是方程①的两根∴12122212439(24)9(24)k x x x x k k +==-++,设P (0,p ),则1122()()PA x y p PB x y p =-=-,,, 22121212121212112()()()()333pPA PB x x y y p y y p x x kx kx pk x x p ⋅=+-++=+---+++2222(1845)3624399(24)p k p p k -++-=+若PA PB ⊥,则0PA PB ⋅=即222(1845)3624390p k p p -++-=对任意k ∈R 恒成立∴22184503624390p p p ⎧-=⎨+-=⎩此方程组无解,∴不存在定点满足条件。

相关文档
最新文档