成人高考数学知识点梳理
成人高考高数知识点归纳总结

成人高考高数知识点归纳总结一、函数与极限1. 函数的定义与性质- 函数的定义与函数图像的特征- 函数的单调性、奇偶性和周期性- 复合函数与反函数的性质2. 极限的概念与运算- 极限的定义与性质- 极限存在的条件- 无穷大与无穷小的比较- 极限的四则运算3. 函数的连续性- 连续函数的定义与性质- 连续函数的运算性质- 间断点与间断函数二、导数与微分1. 导数的概念与运算- 导数的定义与性质- 常见函数的导数公式- 高阶导数与隐函数求导2. 微分的定义与应用- 微分的定义与微分近似计算- 函数的最值与极值点- 函数的凹凸性与拐点三、不定积分与定积分1. 不定积分的基本性质- 不定积分的定义与性质- 常见函数的不定积分公式- 简单换元法与分部积分法2. 定积分的概念与性质- 定积分的定义与几何意义- 定积分的性质与运算法则- 牛顿-莱布尼茨公式与定积分的应用四、级数与幂级数1. 数列的极限与收敛性- 数列极限的定义与性质- 收敛数列的判定方法- 极限存在的充分条件2. 级数的概念与性质- 级数收敛与发散的判定方法 - 常见级数的性质与特征- 正项级数的收敛性判定3. 幂级数的收敛范围与展开式- 幂级数的收敛半径与收敛区间 - 幂级数的基本性质与运算法则 - 常见函数的幂级数展开五、空间解析几何1. 点、向量与直线- 点的表示与特征- 向量的定义与运算- 直线的方程与性质2. 平面与曲面- 平面的方程与性质- 曲面的方程与性质- 直线与平面的位置关系六、常微分方程1. 基本概念与常见类型- 常微分方程的定义与基本形式- 一阶常微分方程与高阶常微分方程- 常见类型的微分方程2. 解的存在与唯一性- 解的存在与存在区间- 解的唯一性与连续依赖性- 利用初值问题求解微分方程以上是成人高考高数知识点的归纳总结,希望对你的学习有所帮助。
通过系统地学习这些知识点,相信你能够在成人高考中取得优异的成绩!。
成人高考数学知识点归纳总结

成人高考数学知识点归纳总结一、代数部分。
1. 集合。
- 集合的概念:把一些确定的对象看成一个整体就形成一个集合。
集合中的元素具有确定性、互异性和无序性。
- 集合的表示方法:列举法(如A = {1,2,3})、描述法(如B={xx^2 -1=0})。
- 集合间的关系:子集(A⊆ B表示A中的元素都在B中)、真子集(A⊂neqq B表示A是B的子集且A≠ B)、相等(A = B当且仅当A⊆ B且B⊆ A)。
- 集合的运算:交集(A∩ B={xx∈ A且x∈ B})、并集(A∪ B = {xx∈A或x∈ B})、补集(设U为全集,∁_U A={xx∈ U且x∉ A})。
2. 函数。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域和对应关系。
- 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
- 奇偶性:设函数y = f(x)的定义域为D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= -f(x),那么函数y = f(x)是奇函数。
- 一次函数y=kx + b(k≠0):k是斜率,b是截距。
当k>0时,函数单调递增;当k < 0时,函数单调递减。
- 二次函数y=ax^2+bx + c(a≠0):对称轴为x =-(b)/(2a),当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值y=(4ac - b^2)/(4a);当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值y=(4ac - b^2)/(4a)。
成人高考数学知识点梳理

成人高考数学知识点梳理第一部分代数第一章 集合和简易逻辑一.元素与集合的关系: x A ∈ 或 x∉A 二.集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 2.并集 A ∪B ={x︱x A ∈或x B ∈} 三.充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数一、 函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法 2.求函数值3.求函数定义域:1)分式的分母不等于0;2)偶次根式的被开方数≥0;3)对数的真数>0;二.函数的性质1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性 (1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数.(2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。
(3)常见函数的图象及性质(熟记)3.反函数定义及求法:(1)反解;(2)互换x,y;(3)写出定义域。
成人高考数学知识点

成人高考数学知识点成人高考数学知识点11、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条件(4)二向量的向量积、二向量平行的充分必要条件2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)熟练掌握二向量平行、垂直的.充分必要条件。
成人高考数学知识点2一】【实数的分类】【自然数】表示物体个数的1、2、3、4・・・等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】 1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
二】【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式三】直线(不定义)直线向两方无限延伸,它无端点。
成人高考数学知识点

成人高考数学知识点成人高考对于许多想要提升学历的成年人来说是一个重要的途径。
数学作为其中的一个重要科目,掌握好相关知识点对于取得好成绩至关重要。
接下来,让我们一起梳理一下成人高考数学的一些关键知识点。
一、代数部分1、函数函数是代数中的重要概念。
包括一次函数、二次函数、反比例函数等。
一次函数的表达式为 y = kx + b,其图像是一条直线。
二次函数的一般式为 y = ax²+ bx + c,图像是一个抛物线,需要掌握其对称轴、顶点坐标等性质。
反比例函数 y = k/x 的图像是双曲线。
2、不等式不等式的解法是常见考点。
例如一元一次不等式、一元二次不等式。
解一元二次不等式时,需要先求出对应的二次方程的根,然后根据函数图像的开口方向确定不等式的解集。
3、数列等差数列和等比数列是重点。
等差数列的通项公式为 an = a1 +(n 1)d,前 n 项和公式为 Sn = n(a1 + an)/2 。
等比数列的通项公式为 an = a1q^(n 1),前 n 项和公式为 Sn = a1(1 q^n)/(1 q) (q ≠ 1)。
二、三角部分1、三角函数的基本概念需要熟悉正弦函数、余弦函数、正切函数等的定义,以及它们在各个象限的正负情况。
2、三角函数的图像和性质正弦函数 y = sin x 、余弦函数 y = cos x 的周期都是2π,正切函数y = tan x 的周期是π。
要掌握它们的最值、单调性、对称轴和对称中心等性质。
3、解三角形主要涉及正弦定理和余弦定理。
正弦定理:a/sin A = b/sin B =c/sin C ;余弦定理:a²= b²+ c² 2bc cos A 。
通过这些定理可以求解三角形的边长、角度等。
三、平面解析几何1、直线方程直线的点斜式方程 y y1 = k(x x1) 、斜截式方程 y = kx + b 、一般式方程 Ax + By + C = 0 等要熟练掌握。
成人高考专升本数学一知识点

成人高考专升本数学一知识点一、函数、极限和连续。
1. 函数。
- 函数的概念。
- 设D是非空实数集,如果对于D中的任意一个数x,按照某种确定的对应关系f,在实数集R中都有唯一确定的数y与之对应,则称f:D→ R是定义在D上的一个函数,记作y = f(x),x∈ D。
x称为自变量,y称为因变量,D称为函数的定义域,函数值f(x)的全体所构成的集合称为函数的值域。
- 函数的性质。
- 单调性:设函数y = f(x)在区间I上有定义,如果对于区间I上任意两点x_1,x_2,当x_1时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间I上是单调增加(或单调减少)的。
- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),则称y = f(x)为偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),则称y = f(x)为奇函数。
- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D,有x + T∈ D且f(x+T)=f(x),则称y = f(x)是周期函数,T称为函数y = f(x)的周期。
通常我们说的周期是指最小正周期。
- 有界性:设函数y = f(x)在区间I上有定义,如果存在正数M,使得对于任意x∈ I,都有| f(x)|≤ M,则称函数y = f(x)在区间I上有界;否则称函数y = f(x)在区间I上无界。
- 反函数。
- 设函数y = f(x)的定义域为D,值域为W。
如果对于W中的任意一个y,在D中有唯一确定的x使得y = f(x),则在W上定义了一个函数,这个函数称为y =f(x)的反函数,记作x = f^-1(y)。
习惯上,我们把y = f(x)的反函数记作y = f^-1(x)。
- 复合函数。
- 设函数y = f(u)的定义域为D_1,函数u = g(x)的定义域为D_2,且g(x)的值域R_2⊆ D_1,则由y = f(u)和u = g(x)复合而成的函数y = f(g(x))称为复合函数,u称为中间变量。
成人高考数学知识点梳理

成人高考数学知识点梳理随着社会的发展和人们对学历的重视,越来越多的成年人选择参加成人高考,通过考试获取高中毕业证书或大学专科证书。
成人高考的数学科目一直是令很多考生头疼的难题。
为了让考生更好地备考数学科目,本文将对成人高考数学知识点进行梳理,帮助考生更好地理解和掌握。
一、整式与分式整式和分式是数学中的基本概念,也是成人高考数学的重点内容。
整式主要包括多项式、幂函数、指数函数等,考生需要了解它们的性质和运算规律。
分式是指一个整数或多项式除以另一个整数或多项式所得到的一个数或多项式,考生需要掌握分式的化简、运算和方程的解法。
二、函数与方程函数是数学中的重要概念,也是成人高考数学中的重中之重。
考生需要了解函数的定义与性质、函数图像的绘制、函数的运算与复合、函数的求导等。
方程是数学中另一个重要的概念,包括一元一次方程、一元二次方程、一元高次方程等。
考生需要熟悉方程的解法和应用,掌握方程求解的方法和技巧。
三、几何与三角几何包括平面几何和立体几何,是成人高考数学中的必考内容。
考生需要掌握直线和角的性质、平面图形的性质与运算、空间图形的展开与体积计算等。
三角包括三角函数和三角恒等式,考生需要了解三角函数的定义与性质、三角函数的图像与性质、三角函数的运算与应用等。
四、数列与数学推理数列是一组按照一定规律排列的数,是成人高考数学中的重要内容。
考生需要了解数列的定义与性质、数列的计算与应用、数列极限的概念与性质等。
数学推理是成人高考数学的另一个重要部分,包括数学归纳法、反证法、递推关系、趋近性等。
考生需要熟悉各种数学推理方法,能够运用数学推理解决实际问题。
五、统计与概率统计与概率是成人高考数学中的一大难点。
统计包括统计调查、统计图表的解读和应用、数据的分析和推理等。
概率是指某种事件发生的可能性,考生需要了解概率的定义与性质、概率的计算与应用、条件概率与事件的独立性等。
掌握统计与概率的知识对于成人高考数学考试至关重要。
成人高考高起专数学知识点归纳总结

成人高考高起专数学知识点归纳总结一、集合论与逻辑1. 集合与元素:集合是指具有相同特性的对象的总体,元素是构成集合的个体。
2. 集合的表示方法:列举法、描述法、特殊集合。
3. 集合的运算:并集、交集、差集、补集。
4. 集合的关系:包含关系、相等关系、互斥关系、无交关系。
5. 命题与命题的逻辑运算:合取、析取、否定、蕴含、等价。
6. 命题的真值表与真值运算:真、假、可满足、不可满足。
二、数与代数1. 数的性质:自然数、整数、有理数、实数、无理数。
2. 数的基本运算:加法、减法、乘法、除法。
3. 数的性质与运算规律:交换律、结合律、分配律、对称律。
4. 代数式与多项式:代数式的定义、多项式的定义、单项式与多项式。
5. 多项式的运算:多项式的加法、减法、乘法。
6. 因式分解与整式的乘法公式:公因式提取法、公式法、分组分解法、特殊公式。
7. 一元一次方程与不等式:方程与方程的解、不等式与不等式的解、绝对值不等式。
8. 二元一次方程组:方程组与方程组的解、二元一次方程组的解法。
三、函数与方程1. 函数的概念与性质:函数的定义、定义域、值域、单调性、奇偶性。
2. 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数。
3. 函数的运算:函数的加法、减法、乘法、除法、复合运算。
4. 反函数与二次函数:反函数的性质、二次函数的定义、顶点、对称轴、图像。
5. 一次函数与一次函数方程:一次函数的定义、斜率、截距、图像、一次函数方程的解法。
6. 一元二次方程:二次方程的定义、根与系数的关系、求解二次方程的方法。
7. 二元二次方程组:二元二次方程组的定义、解法。
四、几何与三角1. 几何图形的性质:点、线、面、角、线段、圆。
2. 几何图形的分类与性质:直线与曲线、多边形、圆的性质。
3. 点、线、面的位置关系:相交、平行、垂直、重合。
4. 相似与全等:相似的定义、判定与性质、全等的定义、判定与性质。
5. 三角形的性质与判定:角的性质、三角形的分类、判定三角形的方法。