定积分计算的总结论文
定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]定积分计算的总结闫佳丽摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法.关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和1(,)()nk k k T f x σξξ==∆∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设()0()01lim (,)lim ()nk k l T l T k T f x I σξξ→→==∆=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ∀>∃>∀<∀=有1()nkkk f xI ξε=∆-<∑,则称函数()f x 在[],a b 可积,I 是函数()f x 在[],a b 的定积分,记为()01()lim ()nbk k a l T k f x dx f x I ξ→==∆=∑⎰.其中,a 与b 分别是定积分的下限与上限;()f x 是被积函数;()f x dx 是被积表达式;x 是积分变量.若当()0l T →时,积分和(,)T σξ不存在极限,则称函数()f x 在[],a b 不可积.定积分的几何意义也就是表示x 轴,x a =,x b =与()y f x =围成的曲边梯形的面积.但是我们知道并不是所有的被积函数都是可积的,这就涉及到定积分的三类可积函数:1、函数()f x 在闭区间[],a b 连续,则函数()f x 在闭区间[],a b 可积.2、函数()f x 在闭区间[],a b 有界,且有有限个间断点,则函数()f x 在闭区间[],a b 可积.3、若函数()f x 在闭区间[],a b 单调,则函数()f x 在闭区间[],a b 可积. 在定积分的计算中,常用的有四种方法,在不同的情况下用的方法也是不同的.一、按照定义计算定积分.定积分的定义法计算是运用极限的思想,简单的来说就是分割求和取极限.以()ba I f x dx =⎰为例:任意分割,任意选取k ξ作积分和再取极限.任意分割任意取k ξ所计算出的I 值如果全部相同的话,则定积分存在.如果在某种分法或者某种k ξ的取法下极限值不存在或者与其他的分法或者k ξ的取法下计算出来的值不相同,那么则说定积分不存在.如果在不知道定积分是否存在的情况下用定义法计算定积分是相当困难的,涉及到怎样才是任意分割任意取k ξ.但是如果根据上述三类可积函数判断出被积函数可积,那么就可以根据积分和的极限唯一性可作[],ab 的特殊分法,选取特殊的k ξ,计算出定积分.第一步:分割.将区间[],a b 分成n 个小区间,一般情况下采取等分的形式.b ah n-=,那么分割点的坐标为(),0a ,(),0a h +,()2,0a h +......()(1),0a n h +-,(),0b ,k ξ在[]1,k k x x -上任意选取,但是我们在做题过程中会选取特殊的k ξ,即左端点,右端点或者中点.经过分割将曲边梯形分成n 个小曲边梯形.我们近似的看作是n 个小长方形.第二步:求和.计算n 个小长方形的面积之和,也就是()1nkk f h ξ=∑.第三步:取极限.()()0011lim lim n nk k h h k k I f h h f ξξ→→====∑∑,0h →即n →∞,也就是说分的越细,那么小曲边梯形就越接近小长方形,当n 趋于无穷之时,小曲边梯形也就是小长方形,那么小长方形的面积和即为曲边梯形的面积,也就是定积分的积分值.例1、用定义法求定积分10xdx ⎰.解:因为()f x x =在[]0,1连续 所以()f x x =在[]0,1可积 令101h n n-== 将[]0,1等分成n 个小区间,分点的坐标依次为02...1h h nh <<<<=取k ξ是小区间[](1),k h kh -的右端点,即k kh ξ=于是210(1)1lim lim 2n n n n xdx khh n →∞→∞+⎛⎫== ⎪⎝⎭⎰211(1)1lim lim 222n n n n n n →∞→∞++=== 所以,112xdx =⎰二、微积分基本公式:牛顿-莱布尼茨公式牛顿-莱布尼茨公式很好的把定积分与不定积分联系在一起。
定积分的计算方法

定积分的计算⽅法定积分的计算⽅法摘要定积分是积分学中的⼀个基本问题,计算⽅法有很多,常⽤的计算⽅法有四种:(1)定义法、(2)⽜顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法。
以及其他特殊⽅法和技巧。
本论⽂通过经典例题分析探讨定积分计算⽅法,并在系统总结中简化计算⽅法!并注重在解题中⽤的⽅法和技巧。
关键字:定积分,定义法,莱布尼茨公式,换元法Calculation method of definite integralAbstractthe integral is the integral calculus is a fundamental problem, its calculation method is a lot of, (1)definition method,(2)Newton - Leibniz formula, (3)integral subsection integral method, (4) substitute method.This paper, by classic examples definite integral analysis method, and in the system of simplified, summarized the approximate calculation method! And pay attention to problem in using the methods and skills.Key words:definite integral ,definition method, Newton - Leibniz, substitute method⽬录⽬录 (2)1绪论 (3)1.1定积分的定义 (3)1.2定积分的性质 (4)2 常⽤计算⽅法 (5)2.1定义法 (5)2.2⽜顿-莱布尼茨公式 (6)2.3定积分的分部积分法 (7)2.4定积分的换元积分法 (7)3 简化计算⽅法............................................................................................. 错误!未定义书签。
定积分思想的总结

定积分思想的总结定积分是微积分中的重要概念之一,它是对无穷小量的累加求和的一种推广,能够解决许多实际问题。
在学习定积分的过程中,我深刻体会到了其思想的重要性和广泛应用的价值。
定积分的思想可以概括为“分割、求和、取极限”。
它的核心思想是将一个区间分割成无穷多个无穷小的小区间,然后对每个小区间上的函数值进行求和,最后取极限得到定积分的值。
这个思想的重要性在于,它使得我们能够通过有限的计算一步步逼近无穷的过程,从而解决实际问题。
定积分使我们能够计算曲线下的面积、求解平均值等,广泛应用于物理、经济、生物等领域。
在定积分的思想中,分割是关键的一步。
通过将一个区间分割成无限多个小区间,可以使得问题更易于处理。
在分割的过程中,我们需要选择适当的分割方式,可以是等距分割、等差分割等。
分割后,每个小区间的长度趋近于零,也即取极限得到“无穷小”。
这种分割的思想使得我们能够处理连续变化的问题,将其离散化从而能够进行计算。
求和是定积分思想的另一个重要环节。
在分割后的每个小区间中,我们要对函数的值进行求和。
这个求和过程需要运用数学知识,包括加法和乘法的运算规则等。
通过将每个小区间上的函数值进行求和,我们可以得到一个近似值,这个近似值越来越接近真实值。
取极限是定积分思想的最后一步。
当我们分割越来越多的小区间,并对这些小区间上的函数值进行求和后,我们要取极限得到定积分的值。
这个极限是对无穷过程的一种抽象,它使得我们能够掌握无穷大和无穷小的概念,从而能够进行精确的计算。
在取极限的过程中,我们需要运用数理逻辑的知识,包括极限的定义和性质等。
定积分思想的应用非常广泛。
在几何学中,我们可以通过定积分计算曲线下的面积。
在物理学中,我们可以通过定积分求解质量、力、功等问题。
在经济学中,我们可以通过定积分计算消费和生产的成本、利润等。
在生物学中,我们可以通过定积分计算生物种群的增长情况等。
这些应用都是基于定积分的思想,通过将实际问题离散化,进行有限的计算后,再取极限得到结果。
定积分的总结

定积分的总结
《定积分的总结》
嘿,大家好呀!今天咱来唠唠定积分这玩意儿。
就说有一次我去买巧克力,那巧克力可真是诱人啊!我站在那柜台前,眼睛直勾勾地盯着那些各式各样的巧克力。
然后我就想啊,这每一块巧克力的大小、形状都不太一样,但要是我想知道这一整堆巧克力总的价值,该咋整呢?这时候我就突然想到了定积分!
定积分不就像是把这一堆巧克力分成好多好多小份,然后每一小份都去计算它的价值,最后加起来不就是总的价值嘛!就好像把那柜台的巧克力从这头到那头,一点点地去分析,去计算。
哎呀,当时我那个脑子啊,一下子就通透了!
你看,定积分就是这么神奇,它能把一个看起来很复杂的东西,通过细分再求和的方式给弄清楚。
就像我们生活中的很多事情,乍一看很麻烦很混乱,但要是我们用定积分的这种思路,一点一点地去剖析,去归纳,最后总能找到答案。
所以啊,以后再遇到什么难题,我就想想那堆巧克力,告诉自己,嘿,用定积分的办法,肯定能搞定!这就是我对定积分的总结啦,是不是还挺有意思的呀!哈哈!。
定积分的计算方法研究毕业论文【范本模板】

编号2013110110 研究类型理论研究分类号O17学士学位论文Bachelor’s Thesis论文题目定积分的计算方法研究作者姓名施莉学号2009111010110所在院系数学与统计学院学科专业名称数学与应用数学导师及职称许绍元教授论文答辩时间2013年5月25日湖北师范学院学士学位论文诚信承诺书目录1。
定积分的产生背景及定义 (3)1。
1曲边梯形面积 (3)1。
2定义1 (3)1。
3定义2 (3)2.定积分的几种计算方法 (4)2。
1定义法 (4)2。
2换元法求定积分 (4)2。
3牛顿莱布尼兹公式 (8)2。
4利用对称原理求定积分 (10)2.5利用奇偶性求函数积分 (12)2。
6利用分部积分法计算定积分 (14)2.7欧拉积分在求解定积分中的应用 (15)3。
结论 (19)4。
参考文献 (19)定积分的计算技巧研究施莉(指导老师:许绍元)(湖北师范学院数学与统计学院中国黄石 435002)内容摘要:定积分在微积分中占有极为重要的位置,它与微分相比,难度大、方法灵活﹒如果单纯的按照积分的定义来计算定积分,那将是十分困难的﹒因此,我们要研究定积分的计算方法﹒常用的方法有定义法、莱布尼兹公式法、分步积分法、换元法以及其他的特殊方法﹒下面我们将探讨一下定积分的计算技巧﹒本文主要根据定积分的定义、性质、被积函数的奇偶性和对称性、以及某些具有特征的函数总结了牛顿莱布尼兹公式、换元法、分部积分、凑微分﹒目前,对于定积分的求法和应用的研究是比较全面和完善的﹒我们要学会总结归纳定积分的一般性求法以及具有特殊特征的函数的求法﹒同时,将定积分应用于数学问题的求解中以及物理学和经济学的实际问题中是非常必要的﹒关键词:定积分;求法;应用定积分的计算技巧研究1.定积分的产生背景及定义1.1曲边梯形面积设f 为闭区间上的连续函数,且由曲线直线以及轴所围成的平面图形,成为曲边梯形11()()i i i ni x x i i i S f x x ξ=-=≈∆∆=-∑变力做功:11()()i i i ni x x i i i W f x x ξ=-==∆∆=-∑定积分的意义:定义1:设闭区间上有1n -个点,依次为:0121n n a x x x x x b -=<<<<<=,它们把[],a b 分成n 个小区间i ∆=[]1,i i x x -,1,2,3,,i n =﹒这些分点或者这些闭子区间构成[],a b 的一个分割,记为:{}011,,,,n n T x x x x -=或者{}12,,,n ∆∆∆,小区间i ∆的长度记为i x ∆=i x -1i x -,并记:T =max {}i x ∆,称为T 的模﹒注:由于i x ∆≤T ,1,2,3,,i n =,因此T 可用来反映[],a b 被分割的细密程度﹒另外,分割一旦给出,T 就随之而确定;但是,具有同一细度的分割却有无限多﹒ 1.2定义1设f 是定义在[],a b 上的一个函数,对于[],a b 的一个分割{}12,,,n T =∆∆∆,任取i i ξ∈∆,1,2,3,,i n =,并作和式1()i i ni x i f ξ==∆∑,称此和式为f 在上的积分和,也是黎曼和﹒显然积分既和分割T 有关,又与所选的点集{}i ξ有关﹒ 1。
定积分计算的总结论文

定积分计算的总结论文标题:定积分的计算方法总结摘要:定积分是微积分学中的重要内容,该文通过总结定积分的计算方法,包括基本定积分的计算、利用定积分计算面积和体积、变量替换求解定积分等方面的知识,探讨了定积分在实际问题中的应用,总结了定积分的计算方法,为读者提供了一种关于定积分计算的综合信息。
关键词:定积分;计算方法;面积;体积;变量替换1.引言定积分是微积分学中的重要工具,用于求解一条曲线所围成的面积、计算一些曲面的体积等。
在物理、经济学和工程学等领域,定积分的应用广泛。
本文主要总结并归纳定积分的计算方法,以及定积分在实际问题中的应用。
2.定积分的基本计算方法2.1基本不定积分首先,我们需要了解基本不定积分的常用公式,如幂函数积分、三角函数积分、指数函数积分等。
基本不定积分是求解定积分的基础,需要熟练掌握。
2.2基本定积分的计算基本定积分的计算可以通过牛顿-莱布尼茨公式进行求解,即通过求解不定积分的差来得到定积分的值。
此外,还可以通过分部积分法等方法来简化计算。
3.利用定积分计算面积和体积3.1曲线围成的面积通过定积分的计算方法,可以求解一条曲线所围成的面积。
常见的曲线有直线、抛物线、三角函数曲线等。
通过将曲线用函数表达式表示,并确定积分上下限,可以通过定积分的计算求解面积值。
3.2曲面的体积利用定积分的计算方法,可以计算曲面围成的体积。
例如,通过确定边界曲线的函数表达式,设置积分上下限,可以通过定积分计算出曲面体积的值。
4.变量替换求解定积分变量替换是定积分计算中常用的方法之一,可以将复杂的定积分转化为简单的形式。
通过选择适当的变量替换,使被积函数形式简单化,从而更容易计算定积分。
5.定积分的应用定积分在实际问题中有广泛的应用,如物体质量、质心的计算、平均值的求解、几何问题的解决等。
本文还介绍了一些实际问题,并利用定积分的计算方法得到解答。
6.结论本文总结了定积分的计算方法,包括基本定积分的计算、利用定积分计算面积和体积、变量替换求解定积分等方面的知识。
定积分计算总结

定积分计算总结什么是定积分?定积分是微积分中的一个重要概念,用于计算曲线下的面积或者是某个变量在一定范围内的累积效应。
在代数中,我们可以通过计算两个数之间的差值求得它们之间的和。
而定积分则是将曲线上的小短线段进行求和,得到整个曲线下面积的一种方法。
定积分的基本概念定积分的概念是由牛顿和莱布尼茨独立提出的。
在微积分中,定积分可以表示为:$$ \\int_{a}^{b}f(x)dx = F(b) - F(a) $$其中,f(x)是被积函数,a和b分别是积分的下限和上限,F(x)是f(x)的一个原函数。
从几何的角度看,定积分就是曲线下的面积。
定积分的计算方法几何法几何法是最基本的一种计算定积分的方法。
这种方法是通过将曲线下的面积近似为一系列矩形的面积之和来计算。
具体步骤如下:1.将曲线下的区间分成多个小区间;2.在每个小区间上选择一点作为矩形的高度;3.计算每个小矩形的面积;4.将所有小矩形的面积相加,得到曲线下的面积的近似值。
初等函数法初等函数法是通过利用不定积分的性质来计算定积分。
如果被积函数f(x)是一个可导函数,那么可以找到它的一个原函数F(x)。
根据定积分的定义,可以将定积分转化为不定积分,然后通过计算不定积分得到定积分的值。
数值积分法数值积分法是一种通过数值计算的方法来计算定积分。
这种方法适用于无法通过初等函数法计算的定积分。
数值积分法包括多种方法,比如矩形法、梯形法、辛普森法等。
这些方法的基本思想都是将曲线下的面积近似为一系列简单图形的面积之和,然后通过数值计算得到近似值。
定积分应用举例计算曲线下的面积定积分最基本的应用就是计算曲线下的面积。
例如,我们可以利用定积分来计算一个曲线和x轴之间的面积,或者计算两个曲线之间的面积。
计算变量的累积效应定积分还可以用来计算某个变量的累积效应。
例如,我们可以用定积分来计算一个物体的位移,或者计算一个变化速率的累积值。
结论定积分是微积分中的一个重要概念,用于计算曲线下的面积或者某个变量在一定范围内的累积效应。
定积分的应用(论文)

定积分的应用中文摘要:本文简要的讨论了定积分在数学、物理学的基本应用。
数学方面包括应用定积分计算平面曲线的弧长、平面图形的面积以及立体图形的体积;物理方面包括应用定积分去求变力对物体所做的功以及求电场的场强。
此外定积分在求数列极限、证明不等式、求和以及因式分解等方面也有广泛的应用;本文在阐述定积分的应用时,充分使用了“微元法”这一基本思路,它是我们解决许多实际问题的核心。
关键词:微元法 定积分 电场强度 数列极限Abstract: This paper discussed the definite integral in mathematics, physics of basic applications. Mathematics including application of definite integral calculation plane curve arc length, the plane figure of the area and volume of three-dimensional graph, Physical aspects including application of definite integral to change to the object force and the work done for electric field. Besides definite integral in the beg sequence limit, proof, inequality summation factoring decomposition and has a wide application in, Based on the expatiation of the definite integral of application, make full use of the "micro element method" the basic idea, it is we solve many practical problems at the core.Key W ords: Micro element method definite integral electric intensity sequence limit引言:恩格斯曾经指出,微积分是变量数学最重要的部分,微积分是数学的一个重要的分支,它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具;如复杂图形的研究,求数列极限,证明不等式等;而在物理方面的应用,可以说是定积分最重要的应用之一,正是由于定积分的产生与发展,才使得物理学中精确的测量计算成为可能,从而使物理学得到了长足的发展,如:气象、弹道的计算,人造卫星轨迹的计算,运动状态的分析等,都要用得到微积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分计算的总结闫佳丽摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元.1前言17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分.2正文那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和1(,)()nk k k T f x σξξ==∆∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设()0()01lim (,)lim()nkk l T l T k T f x I σξξ→→==∆=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ∀>∃>∀<∀=有1()nkkk f xI ξε=∆-<∑,则称函数()f x 在[],a b 可积,I 是函数()f x 在[],a b 的定积分,记为()01()lim()nbkk al T k f x dx f x I ξ→==∆=∑⎰.其中,a 与b 分别是定积分的下限与上限;()f x 是被积函数;()f x dx 是被积表达式;x 是积分变量.若当()0l T →时,积分和(,)T σξ不存在极限,则称函数()f x 在[],a b 不可积.定积分的几何意义也就是表示x 轴,x a =,x b =与()y f x =围成的曲边梯形的面积.但是我们知道并不是所有的被积函数都是可积的,这就涉及到定积分的三类可积函数:1、函数()f x 在闭区间[],a b 连续,则函数()f x 在闭区间[],a b 可积.2、函数()f x 在闭区间[],a b 有界,且有有限个间断点,则函数()f x 在闭区间[],a b 可积.3、若函数()f x 在闭区间[],a b 单调,则函数()f x 在闭区间[],a b 可积. 在定积分的计算中,常用的有四种方法,在不同的情况下用的方法也是不同的.一、按照定义计算定积分.定积分的定义法计算是运用极限的思想,简单的来说就是分割求和取极限.以()ba I f x dx =⎰为例:任意分割,任意选取k ξ作积分和再取极限.任意分割任意取k ξ所计算出的I 值如果全部相同的话,则定积分存在.如果在某种分法或者某种k ξ的取法下极限值不存在或者与其他的分法或者k ξ的取法下计算出来的值不相同,那么则说定积分不存在.如果在不知道定积分是否存在的情况下用定义法计算定积分是相当困难的,涉及到怎样才是任意分割任意取k ξ.但是如果根据上述三类可积函数判断出被积函数可积,那么就可以根据积分和的极限唯一性可作[],a b 的特殊分法,选取特殊的k ξ,计算出定积分.第一步:分割.将区间[],a b 分成n 个小区间,一般情况下采取等分的形式.b ah n-=,那么分割点的坐标为(),0a ,(),0a h +,()2,0a h +......()(1),0a n h +-,(),0b ,k ξ在[]1,k k x x -上任意选取,但是我们在做题过程中会选取特殊的k ξ,即左端点,右端点或者中点.经过分割将曲边梯形分成n 个小曲边梯形.我们近似的看作是n 个小长方形.第二步:求和.计算n 个小长方形的面积之和,也就是()1nkk f h ξ=∑.第三步:取极限.()()0011lim lim n nk k h h k k I f h h f ξξ→→====∑∑,0h →即n →∞,也就是说分的越细,那么小曲边梯形就越接近小长方形,当n 趋于无穷之时,小曲边梯形也就是小长方形,那么小长方形的面积和即为曲边梯形的面积,也就是定积分的积分值.例1、 用定义法求定积分10xdx ⎰.解:因为()f x x =在[]0,1连续 所以()f x x =在[]0,1可积 令101h n n-== 将[]0,1等分成n 个小区间,分点的坐标依次为02...1h h nh <<<<= 取k ξ是小区间[](1),k h kh -的右端点,即k kh ξ=于是210(1)1lim lim 2n n n n xdx khh n →∞→∞+⎛⎫== ⎪⎝⎭⎰211(1)1lim lim 222n n n n n n →∞→∞++=== 所以,1012xdx =⎰二、微积分基本公式:牛顿-莱布尼茨公式牛顿-莱布尼茨公式很好的把定积分与不定积分联系在一起。
利用此公式,可以根据不定积分的计算计算出定积分。
这个公式要求函数()f x 在区间[],a b 内必须连续。
求连续函数()f x 的定积分只需求出()f x 的一个原函数,再按照公式计算即可.定理:若函数()f x 在区间[],a b 连续,且()F x 是()f x 的原函数,则()()()baf x dx F b F a =-⎰.证明:因为()F x 是()f x 的原函数,即[],x a b ∀∈有'()()F x f x = 积分上限函数()xa f t dt ⎰也是()f x 的原函数所以()'()()xa f t dt f x =⎰所以()()xaf t dt F x C -=⎰令x a =有()()aaf t dt F a C -=⎰即()C F a =-再令x b =有()()()baf x dx F b F a =-⎰我们知道,不定积分与定积分是互不相关的,独立的.但是在连续的条件下,微积分基本定理把这两个互不相关的概念联系起来,这不仅给定积分的计算带来极大的方便,在理论上把微分学与积分学沟通起来,这是数学分析的卓越成果,有着重大的意义.例2、 用牛顿莱布尼茨公式计算定积分10xdx ⎰.解: 原式=1201122x =同样的一道题目,用牛顿-莱布尼茨公式明显比定义法简单,容易计算. 三、定积分的分部积分法公式:函数()u x ,()v x 在[],a b 有连续导数则()()()()()()bbba aau x dv x u x v x v x du x =-⎰⎰证明:因为()u x ,()v x 在[],a b 有连续导函数 所以[]'''()()()()()()u x v x u x v x v x u x =+所以[]'''()()()()()()()()()()bbbba a a au x v x u x v x u x v x v x u x dx u x v x ⎡⎤==+=⎣⎦⎰⎰ 即''()()()()()()bbba aau x v x dx u x v x v x u x dx =-⎰⎰或()()()()()()bbba aau x dv x u x v x v x du x =-⎰⎰例3、 求定积分21ln xdx ⎰.解:22221111ln ln ln 2ln 202ln 21xdx x x xd x x =-=--=-⎰⎰四、定积分的换元积分法应用牛顿-莱布尼茨公式求定积分,首先求被积函数的原函数,其次再按公式计算.一般情况下,把这两步截然分开是比较麻烦的,通常在应用换元积分法求原函数的过程中也相应交换积分的上下限,这样可以简化计算.公式:若函数()f x 在区间[],a b 连续,且函数()x t ϕ=在[],αβ有连续导数,当t αβ≤≤时,有()a t b ϕ≤≤则:[][]'()()()()()baf x dx f t t dt f t d t ββααϕϕϕϕ==⎰⎰⎰证明:()()()()bba af x dx F x F b F a ==-⎰[][][][]'()()()()()()()f t t dt F t F F F b F a ββααϕϕϕϕβϕα==-=-⎰即[]'()()()baf x dx f t t dt βαϕϕ=⎰⎰这个公式有两种用法: (1)、若计算()ba f x dx ⎰○1、选取合适的变换()x t ϕ=,由a ,b 通过()b t ϕ=,()a t ϕ=分别解出积分限β与α;○2、把()x t ϕ=代入()ba f x dx ⎰得到[]'()()f t t dt βαϕϕ⎰; ○3、计算. 例4、计算定积分0⎰。
解:设sin x a t =有cos dx a tdt = 0x =时,0t =;x a =时,2t π=22222200sin 2cos ()224a t a tdt t a πππ==+=⎰⎰(2)、计算()g t dt βα⎰,其中[]'()()()g t f t t ϕϕ=○1、把()g t 凑成[]'()()f t t ϕϕ的形式; ○2、检查()x t ϕ=是否连续; ○3、根据α与β通过()x t ϕ=求出左边的积分限a ,b ; ○4、计算. 例5、计算定积分1-⎰。
x =,则254x t -=,12dt xdx =-当1t =-时,3x =;当1t =时,1x =所以原式=1133111()122x dx x -=-=⎰上面这四种方法就是定积分计算中最常用的四种方法,本文通过举例分析定积分的几种计算方法,来体现定积分的计算.定积分的计算类型很多,要熟练地进行定积分的各种运算,就要对定积分的运算技巧不断熟悉和掌握.其实,在实际计算中,遇到的题目不一样,用的计算方法也不一样.定义法一般不常用,计算起来比较困难,所以一般不会用定义法计算.常用的就是其他三种,即牛顿-莱布尼茨公式,分部积分法和换元积分法.在这三种方法中,牛顿-莱布尼茨公式比较常用,通过连续把定积分转换成为不定积分再进行计算即可.但是转换成为不定积分后,有的被积函数不能直接用现成的公式计算,那么就要用不定积分的分部积分或者换元积分法求出一个原函数再代入上下限进行计算,就复杂化了.因此,如果被积函数连续且可以用公式直接求出原函数,那么就用牛顿-莱布尼茨公式进行计算.如果不能直接用公式,那么为了简单化,就看被积函数是否可以用分部积分或者换元积分法,如果可以,那么就选择分部积分或者换元积分法直接进行计算.3参考文献[1]刘玉琏.《数学分析讲义上册》.高等教育出版社.2008.5[2]马訾伟.《数学分析讲义全程导学及习题全解》.中国时代经济出版社.2009.9毕业论文题目:定积分计算的总结学校:集宁师范学院年级:数学系09级班级:数学教育一班学号:200920520141姓名:闫佳丽指导教师:李林书2012年6月14日。