氮氧化物转换器工作原理
NO2-NO转换器使用说明书V1.1

2.0 技术参数……………………………………………………..2
3.0 设计…………………………………………………………..3
4.0 说明…………………………………………………………..4
5.0 安装…………………………………………………………..5
6.0 首次启动……………………………………………………...6
警告
打开设备会有电压,危险!
在对设备内部操作时,应切断电源。只有合格的专业人士方可对设备进行维修。
如果不能安全操作设备,用户必须停止操作,并防止进一步使用。
设备故障原因包括
-机壳损坏 -功能减弱 -存放条件不当 -经常移动设备
仪器的运输和保管
1.仪器在运输时,要防雨,防剧烈冲击 2.仪器应原箱存放在仓库保管,温度 0-40ºC,相对湿度不大于 85%,不应有腐蚀
7.0 维护保养和售后服务………………………………………..7
8.0 附件 1…………………………………………………………8
1
NO2/NO 转换器使用说明书
1.0 介绍
NO2/NO 转换器
在很多情况下,用 NO 红外分析仪分析 NOx (NO2 和 NO 含量) 时需要使用 NO2-NO 转换器。装有不锈钢加热内筒、内装转换材料的 INOX 系列转换器正是 为此目的而设计的。该系列寿命长、转换率高、稳定性高。在长时间在线工作方 面有卓越的表现。
性物质存在。
制造厂保证
在用户遵照保管和使用规则条件下,从制造厂发货给用户之日起 14 个月内, 产品因制造质量不良而产生损坏或不能正常工作时,制造厂应无偿的为用户更换 或维修产品零部件。
7
8.0 附表 1 温控器参数设定
NO2/NO 转换器使用说明书
烟尘烟气连续自动监测系统运行管理

Critical Orifice Coarse Filter Cal Gas Line
Vacuum Reference Line Diluted Sample Out
②烟道外稀释探头
4. 采样管线
稀释系统的采样管线由四根聚四氟乙烯管 组成,其中两根分别用于往采样探头输送
校准气和稀释空气,一根用于往各种分析
接稀释采样器。
1.6.4 化学发光法NOx监测仪器
• 化学发光是由于化学反应产生的光能发射。氮氧 化物等化合物吸收化学能后,被激发到激发态, 在由激发态返回至基态时,以光量子的形式释放 能量。测量化学发光强度对物质进行分析测定的 方法称为化学发光法。由若干方法可以对NOx进 行化学发光测定,最广泛使用的是臭氧的发光反 应。
• 在化学发光分析仪(图1—19)中,用UV光照
Байду номын сангаас
射石英管中的氧气产生O3。提供的O3超过
反应需要O3以确保NO完全转换成NO2和稀 释测量气体,使存在于样品气体中的其他 吸收发射的化学发光辐射的分子,例如: O2、N2、CO2的熄灭作用减至最小。因为
光电倍增管信号正比于NO分子数,而不是
NO浓度,所以必须小心地控制样品的流量。
1.6 气态污染物连续监测的分析 仪器
• 一般说来,一台分析仪器包含整个系统的 控制/显示单元、测量单元(光学部件单 元)、信号处理单元等。
1.6.1 非分散红外分析仪 NDIR
1. 简单非分散红外 Simple Non Dispersive Infrared 2. Luft检测器或串联型气动式检测器 3. Photoacostic光声检测器
• 受激发的电子快速的损失能量通过以下四种方法 之一返回到基态: • • • • ①分离,吸收高能光子能够引起电子完全脱离
氮氧化物转化器催化剂-概述说明以及解释

氮氧化物转化器催化剂-概述说明以及解释1.引言1.1 概述氮氧化物转化器催化剂是一种针对汽车尾气中的氮氧化物进行转化的重要技术。
随着汽车数量的增加和环保意识的提高,减少汽车尾气排放对于保护环境和人类健康具有重要意义。
氮氧化物是汽车尾气中的主要污染物之一,其排放会对大气环境和人体健康造成极大的危害。
氮氧化物转化器催化剂通过催化反应将氮氧化物转化为无害的氮气和水蒸气,从而实现氮氧化物的减排。
该催化剂通常由催化剂载体和活性组分组成。
催化剂载体是指催化剂的基础材料,常见的催化剂载体包括氧化铝、碳纳米管等。
活性组分是指催化剂中能够促进氮氧化物转化反应的物质,常见的活性组分有钯、铑、铂等贵金属。
氮氧化物转化器催化剂的应用主要集中在汽车尾气净化领域。
随着环保政策的推进,越来越多的汽车使用氮氧化物转化器催化剂来降低氮氧化物排放。
此外,氮氧化物转化器催化剂还可以应用于工业废气处理和发电厂烟气净化等领域。
本文将对氮氧化物转化器催化剂的定义、原理、种类和应用进行详细介绍。
通过对其优势和发展前景的探讨,旨在加深对氮氧化物转化器催化剂的认识,并为相关领域的研究和应用提供一定的参考。
1.2文章结构1.2 文章结构本文将按照以下结构来详细介绍氮氧化物转化器催化剂的相关内容:第一部分为引言部分(Chapter 1),概述了本文的研究背景和研究目的,引出了氮氧化物转化器催化剂的重要性和应用领域。
第二部分为正文部分(Chapter 2),主要包括两个小节。
2.1小节将详细介绍氮氧化物转化器催化剂的定义和原理,包括其基本功能、催化反应机理以及催化剂的组成和结构。
2.2小节将探讨氮氧化物转化器催化剂的种类和在不同应用领域的应用情况,具体介绍各种常用催化剂的特点和性能。
第三部分为结论部分(Chapter 3),对氮氧化物转化器催化剂的优势进行总结和归纳,指出其在环境保护和能源利用等方面的潜在应用价值。
同时,展望氮氧化物转化器催化剂的未来发展前景,提出相关的研究方向和可能的应用领域。
氮氧化物转换器工作原理

氮氧化物转换器工作原理
氮氧化物转化器,也被称为氮氧化物催化转换器(NOx trap),是一种用于减少内燃机尾气中氮氧化物排放的装置。
尾气中的氮氧化物是一种污染物,对大气环境和人类健康造成严重影响,特别是产生酸雨、光化学烟雾和温室效应等。
因此,减少氮氧化物的排放是环保的重要目标之一1.吸附区域:
吸附区域包含了氧化物吸附剂,通常是氧化镧(La2O3)或氧化钇(Y2O3),以及贵金属催化剂,如铑(Rh)或铂(Pt)。
在正常工作状态下,氮氧化物以NO和NO2的形式存在于尾气中,这些氮氧化物将通过氧化物吸附剂吸附并储存在吸附区域。
贵金属催化剂可帮助氮氧化物吸附并提高反应速率。
2.还原区域:
当氮氧化物吸附达到一定程度时,氧化物吸附剂会饱和。
此时将引入燃料(如汽油、柴油)和较高温度(通常在250-350°C之间)来进行还原。
这将产生还原剂,例如碳氢化合物和CO,可以将吸附的氮氧化物还原为氮气(N2)和水蒸气(H2O)。
还原剂通过贵金属催化剂进行反应,以将氮氧化物还原为无毒的气体。
在氮氧化物转化器的工作过程中,还原区域和吸附区域交替进行。
当吸附区域饱和时,需要通过适当的控制条件(如温度)来引导转化器进入还原区域。
在还原区域中,贵金属催化剂促使氮氧化物还原为氮气和水蒸气,然后此区域会被再次用于吸附新的氮氧化物。
总体而言,氮氧化物转化器的工作原理是通过吸附和催化反应,将尾气中的氮氧化物转化为无毒的氮气和水蒸气。
这种装置可以有效降低内燃
机尾气中的氮氧化物排放,减少对环境的污染,提高空气质量,并保护人类健康。
NOx和HC生成机理

NOx和HC生成机理1:NO x的生成机理NO x的生成主要有三个条件:(1)高温,一般认为当燃烧温度高于2600K时就会开始大量的生成NO x。
(2)富氧,NO x的生成离不开高浓度的氧环境。
(3)缸内的滞留时间。
即已燃气体在缸内的停留时间越长NO x的生成越多,反之则越少。
一:点燃式内燃机(1)空燃比的影响氧浓度的影响对于NO x的形成非常重要,NO x的形成有一个最佳的浓度,也就是说在发动机中有一个最佳的空燃比是适合NO x的形成的,一般认为当过量空气系数为1.1时,NO x浓度达到最高,当低于该值时由于氧的浓度较低,因此就抑制了NO x的生成;而高于该值时,因为过量空气系数较大,从而影响了缸内混合气的温度,这样也降低了NO x的生成。
(2)点火定时的影响对于点燃式发动机,点火正时对于NO x的形成非常重要,当推迟点火式。
可以降低发动机的最高燃烧温度,缩短已燃气体在缸内的停留时间,这样可以有效的降低NO x的形成。
同时,推迟点火还将提高排气温度,这样还有助于HC的后氧化,但是推迟点火却会使得燃油消耗量增加,同时降低比功率。
(3)已燃气体的影响已燃气体主要是指缸内残留的废气和通过从排气管引回缸内的再循环废气(EGR)两部分。
发动机气缸内的气体主要由进入的新鲜空气,挥发的燃料气体和残留废气三部分组成。
残留废气对于发动机缸内混合气的温度,热容,氧浓度有较大的影响。
一般来说残余废气系数的增加回使混合气热容增加,降低燃烧的最高温度,同时还使得发热量降低,这些都会使NO x的生成量降低。
因此,现在一般要求在不影响发动机性能的基础上尽可能的增大EGR 率来降低NO x的生成。
当然,EGR的加入是有限度的,过量的EGR会使得缸内的混合气过于稀释,从而影响燃料的燃烧,造成PM和HC排放的增加;同时也会降低发动机的燃油效率。
二:压燃式发动机柴油机的NO x的形成与汽油机一样,也主要受缸内的最高燃烧温度的影响,其中柴油的NO x生成主要受开始阶段的燃烧的影响,据研究表明,柴油机的NO x主要出现在发动机开始燃稍候的20ºCA内。
氮氧化物(NOX)转化效率测定仪

氮氧化物(NOX)转化效率测定仪一、简介化学发光分析仪,例如英国Signal-4000系列,美国环保总署(EPA)1979重型车法规规定,转换器初次使用之前必须进行检查,以后每周要检查,以确保转换效率至少是90%。
Signal的NOXGEN III产生数量精确已知的NO2,用于测试转换器的效率,完全符合EPA 的要求。
这台仪器结构紧凑,廉价,控制精密。
测试结果重复性好,这些是从上一代转换效率测试仪无法得到的。
O3由一电脉冲供电的高能量灯产生,改变电脉冲可以调整O3的产量。
与高压电晕放电技术相比较,NOXGEN III 不会由空气产生任何NO。
仪器内有一个稳压电路,一个脉冲馈送给一个高压电源变压器,克服电网电压的变化,确保仪器工作稳定,使产生的NO2的浓度稳定。
二、工作原理NO和O2送入效率仪,高能灯将部分空气转换成O3。
O2与O3的混合气体送入NO气流中,于是NO立即被O3转化成NO2,余下的O2与NO进行化学反应再一次产生NO2,但是,这一反应非常慢,转换效率测试中不需要考虑。
产生的NO2的量由NO浓度的下降来确定。
例如,如果NO浓度下降了400vpm,那么,相应地,产生400vpm的NO2,因为这一氧化反应是1:1的分子反应。
因此,NO2的浓度正比于产生的O3的浓度。
当效率仪与分析仪的转换器连接以后,NO2应该转换回NO。
从获得的测试结果,可以确定转换器的效率。
注意事项:03发生器d的使用注意事项:NOXGEN III利用高效高能光源系统将O2离子化成O3。
O3发生器整体安装在仪器内部一个盒内。
没有授权的人员不要打开盒子,因为即使切断电源,盒子内仍然有高压电。
三、安装注意:NOXGENIII的外壳是3u高度19”标准机箱。
可以放在桌面上,也可装入19”标准机柜。
放在桌面上时,机箱的前部有可以张开的支脚,使仪器倾斜,方便使用。
1.在19机柜的安装当安装在19“机柜里时,要拆掉支脚。
为此,松开底盖的4个十字头螺钉,向后拉底盖以便取下底盖。
氮氧化物分析仪分析原理

氮氧化物分析仪原理IEM-ME200氮氧分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供快速、线性、准确、高度稳定和高选择性响应。
IEM-ME200氮氧分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),探测器根据中央处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),中央处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氮氧化物和氧含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,中央处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧气体(NOX/02)敏感,所以超高频常温超导谐振探测场只对氮氧气体扰动产生信号反应,而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧化物和氧含量信息,为下一步工作提供了可靠的数据保障。
分析原理IEM-ME300氨气分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氨气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。
IEM-ME300氨气分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氨气传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
氮氧化物分析仪分析原理

氮氧化物分析仪原理IEM-ME200氮氧分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氮氧气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供快速、线性、准确、高度稳定和高选择性响应。
IEM-ME200氮氧分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),探测器根据中央处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),中央处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
当氮氧化物和氧含量在被探测区内出现时整个恒定的超高频常温谐振探测场就会被扰动,中央处理器就会瞬间将这种扰动信号进行数值化分析并转换成模拟信号输出。
由于常温超导稀土金属(铋)元素固有的超高频常温超导谐振性(即超高频常温超导谐振系数)只对氮氧气体(NOX/02)敏感,所以超高频常温超导谐振探测场只对氮氧气体扰动产生信号反应,而其他气体成分则不会对气体分析产生交叉干扰,从而我们也就能在很短的时间内获取所探测氮氧化物和氧含量信息,为下一步工作提供了可靠的数据保障。
分析原理IEM-ME300氨气分析仪依据超高频常温超导谐振原理研发(超高频及3GHz-30GHz之间的无线电波),采用专利技术以精湛工艺制造而成,是一款高规格的氨气分析仪,集无可匹敌的精度、灵活性和性能于一身,能够实现对过程和安全的最优控制,提供响应速度快,测量精度高,稳定性和重复性好。
IEM-ME300氨气分析仪探测器采常温超导稀土金属(铋)元素高精度集成(常温超导材料即在广义常态的已知各种温度(低于材料熔点)下具有“零电阻”特性的导体材料),氨气传感器根据处理器发出的探测指令在探测区域形成超高常温超导谐振区(谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动),处理器以常温超导稀土金属(铋)元素固有的超高频常温超导谐振系数对一切经过此区域的气体成分进气探测分析,探测区域与被探测过程气体形成一个相对恒定的超高频常温超导谐振探测场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氮氧化物转换器工作原理
1.SCR反应
NOx转换器采用选择性催化还原(SCR)技术进行氮氧化物的转化。
在SCR反应中,尾气中含有特定的还原剂(如氨NH3)和反应剂(如氧气
O2),通过选择性催化剂(如铁、钒、钼催化剂)的作用,在较高的温度
下将NOx转化为无害的氮气和水蒸气。
SCR反应具有高效、选择性和可控
性的特点。
2.还原剂注入
在尾气进入NOx转换器之前,系统会注入一定量的还原剂(如尿素溶
液或氨气)到尾气中。
这样可以确保在SCR反应中催化剂和还原剂的接触,并提供足够的反应物质来完成氮氧化物的转化。
3.反应温度控制
NOx转换器的工作需要较高的反应温度。
因此,系统通常会使用尾气
再循环技术,将一部分高温尾气重新引入到进气中,从而增加反应温度。
此外,也可以通过供氧来控制反应温度,以确保SCR反应在合适的温度范
围内进行。
4.催化剂保护
NOx转换器中的催化剂需要保持良好的工作状态,以确保高效的SCR
反应。
因此,系统通常会加装一些附属装置,如颗粒捕集器和氧化催化剂,来减少颗粒物和其他有害物质对催化剂的污染,并确保催化剂的长期稳定
运行。
5.尾气排放监测
为了确保NOx转换器的工作效果,系统通常会安装一套尾气排放监测系统,用于实时检测尾气中的氮氧化物浓度和其他有害物质。
根据监测结果,系统可以进行调整和优化,以提高氮氧化物的转化效率。
总结起来,氮氧化物转换器的工作原理是通过SCR反应将尾气中的NOx转化为无害物质,其中还原剂注入、反应温度控制、催化剂保护和尾气排放监测是实现这一目标的关键环节。
这种技术可以有效减少柴油机尾气中的氮氧化物排放,保护环境和人体健康。