断裂力学——3裂纹尖端应力场和位移场计算教学文案

合集下载

断裂力学

断裂力学
(2)几何方程
1 x ( x y) E 1 y ( y x) E 2(1 ) xy xy E
(4)相容方程
u x x v y y v u xy x y
4 4 4 2 2 2 4 0 4 x x y y
k
结构为何破坏?
存在裂纹
(2) 研究对象与任务
定义: 断裂力学是研究带裂纹体的强度和裂纹扩展规律的一门学科。 任务: 1) 研究裂纹尖端附近的应力变化。 2) 掌握裂纹在荷载作用下的扩展规律。 3) 了解带裂纹构件的承载能力。 4) 提出抗断设计的方法,保证构件安全。
断裂力学的发展为强度设计打开了新领域,但并不能完全代替传统 的强度设计理论。
1.2 材料断裂韧度
(1)脆性断裂与韧性断裂
要区分两种不同的断裂需要首先了解什么是脆性,什么是韧性。 韧性(度)是指材料在断裂前的弹塑性变形中吸收能量的能力。 韧度高的材料不易断裂。比如低强度钢在断裂前往往有大量的塑性 变形,颈缩。可容易产生塑性变形的材料并不一定韧度高。如金、 银很容易断裂,是因为强度太低,吸收能量有限。把韧性低的材料 称为脆性材料,如玻璃、粉笔。 脆性断裂:荷载与变形量是线性关系(非线性段很小)。起裂点与失 稳点非常接近。如图,裂纹扩展后荷载迅速下降,断裂过程很快结束。 从实验现象上看脆断的断口比较平坦,基本与轴线垂直。 韧性断裂: 韧性断裂有较长的非线性关系(即先早已进入塑性阶段)。 启裂后又有一段缓慢的扩展时间,除外荷载增加到失稳点否则不失稳。 实验试件切口根部发生塑性变形,剩余面积变小,端口可能是锯齿型。
1) 2) 3)
Z的共轭复数:
z x iy
z1 z 2 z1 z 2
cos i sin

断裂力学导论讲诉课件

断裂力学导论讲诉课件
弹塑性材料的特性
弹塑性材料在受到外力作用时,会同 时发生弹性变形和塑性变形。在裂纹 尖端附近,由于应力集中,材料会发 生屈服并进入塑性区。
能量释放率
能量释放率是描述裂纹扩展所需最小 能量的物理量。在弹塑性断裂力学中 ,当能量释放率达到材料的临界值时 ,裂纹将发生失稳扩展。
断裂韧性测试方法
紧凑拉伸试样法
压力容器的断裂分析
压力容器的断裂分析
压力容器的断裂分析主要关注压力容器在各种工况下的强度和稳定性。由于压力容器内部储存着高压气体或液体,一旦发生 破裂,后果将非常严重。因此,对压力容器的断裂分析需要采用严格的测试和评估方法,以确保压力容器的安全性和可靠性 。
压力容器的断裂分析
压力容器的断裂分析
在压力容器的断裂分析中,需要考虑压力容器的结构形式、 材料特性以及各种工况下的应力分布。通过断裂力学的理论 和方法,可以评估压力容器的强度和稳定性,为压力容器的 设计、制造和使用提供重要的安全保障。
高层建筑抗震设计
利用断裂力学原理,可以评估高层建 筑在地震作用下的抗震性能,优化抗 震设计。
机械工程
转子动力学分析
在机械工程中,断裂力学可用于转子动 力学的分析,研究转子裂纹的形成和扩 展,提高旋转机械的稳定性和可靠性。
VS
焊接结构完整性评估
焊接是机械工程中常用的连接方式,断裂 力学可以用于焊接结构的完整性评估,确 保焊接结构的可靠性和安全性。
课程目标
掌握断裂力学的基本 原理和方法。
培养学生对断裂力学 研究的兴趣和独立思 考能力。
了解断裂力学在工程 实践中的应用和案例 分析。
02
断裂力学基础知识
断裂力学的定义
总结词
断裂力学是一门研究材料断裂行为的学科。

断裂力学讲义分解

断裂力学讲义分解

1
16 G
sin (2cos
k
1)
16
a22
1
16 G
[(k
1)(1
cos )
(1
cos )(3cos
1)]
a33
1
4 G
3 4
k
3
1
平面应变 平面应力
S
r 应变能密度因子—表示裂纹尖端附近应力场密度切的强弱程度
S a11KⅠ2 2a12 KⅠKⅡ a22 KⅡ2 a33KⅢ2
2 r 2
22
y
KⅠ cos (1 sin sin 3 )
2 r 2
22
KⅡ sin cos cos 3 2 r 2 2 2
15
xy
KⅠ
sin
cos
cos
3
2 r 2 2 2
KⅡ cos (1 sin sin 3 )
2 r 2
22
xz
KⅢ
sin
2 r 2
yz

r
) | 0 0
3 2
r
[
r
(
r
3 2
)]
0
0
12
r 0
r
3 2
0
( r
3 2
|
0
0
KⅠcos
0
2
KⅡ
sin
0
2
0 0
2
arctan
KⅠ ) KⅡ
G0
1 2 E
(
KⅡ4 KⅠ2 KⅡ2
)
G0
=1 -m2 ( E
KⅠ2
+KⅡ2 )
G0 G0 根不是解
裂纹扩展

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

第三章弹塑性断裂力学(EPFM)简要§3-1 Dugdale方法(D-M模型)§3-2 裂纹尖端张开位移CTOD(COD)定义及准则§3-3 COD 与K1的一致性§3-4 COD准则的应用34COD§3-5 J 积分的定义及守恒性§3-5-1 J 积分的定义§3-5-2 J 积分的守恒性§3-6 线弹性条件下J 与K的关系§3-7 在弹塑性条件下J 与CTOD的关系常见的定义有以下几种:(1)弹塑性交界线与裂纹表面的交界点处的张开位移看作CTOD。

对D-M模型描述的裂纹,经Paris等人的工作,Well 在1965年用大量试验得出,可以用裂纹尖端的CTOD ()作为表征裂纹δ弹塑性应力应变场的单一参数,当此参数值达到材料的临界值,材料就会发生开裂。

即为开裂准则。

使用这一准则必须解决两个问题:(1)使用小试样能方便准确地测量出材料稳定(与外载荷裂纹尺寸及裂纹几何的关系(即cδδ=的开裂参数;(2)建立裂纹尖端的与外载荷、裂纹尺寸及裂纹几何的关系(即的表达式)。

c δδ(,,)f p a Y δ=试验表明用TPB 、CT 等小试样可以实现,试验证明开裂点的是材料常数,但失稳扩展点的不是常数!换句话说,CTOD 只是开裂判据,不是破坏判据!c δc δδGB/T 2358-1994对的测试方法做了详尽的说明,本课不讲实验测试(大家要c c δ用时,严格按标准的要求技术细节做即可,不用讲了就忘了)。

CTOD 方法在中低强度钢压力容器和管道,即焊接结构等方面在工程上有广泛应用它的优点是方法简单直观易测缺点是定义不明确理论依据不足用。

它的优点是方法简单、直观,易测,缺点是定义不明确,理论依据不足。

§3-5 J 积分的定义及守恒性3-5JJ 积分是J.R .Rice在1968年提出的,并由此建立了弹塑性断裂力学的另一个方法。

断裂力学讲义(学生讲义)

断裂力学讲义(学生讲义)

第一章 绪论§1.1 断裂力学的概念任何一门科学都是应一定的需要而产生的,断裂力学也是如此。

一提到断裂,人们自然而然地就会联想到各种工程断裂事故。

在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。

但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。

例如,1943~1947年二次世界大战期间,美国的5000余艘焊接船竟然连续发生了一千多起断裂事故,其中238艘完全毁坏。

1949年美国东俄亥俄州煤气公司的圆柱形液态天然气罐爆炸使周围很大一片街市变成了废墟。

五十年代初,美国北极星导弹固体燃料发动机壳体在试验时发生爆炸。

这些接连不断的工程断裂事故终于引起了人们的高度警觉。

特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。

于是人们认识到了传统的设计思想是有缺欠的,并且开始寻求更合理的设计途径。

人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。

传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。

因此实际材料的强度大大低于理论模型的强度。

断裂力学恰恰是为了弥补传统设计思想这一严重的缺陷而产生的。

因此,给断裂力学下的定义就是断裂力学是研究有裂纹(缺陷)构件断裂强度的一门学科。

或者说是研究含裂纹构件裂纹的平衡、扩展和失稳规律,以保证构件安全工作的一门科学。

断裂力学在航空、机械、化工、造船、交通和军工等领域里都有广泛的应用前景。

它能解决抗断设计、合理选材、制定适当的热处理制度和加工工艺、预测构件的疲劳寿命、制定合理的质量验收标准和检修制度以及防止断裂事故等多方面的问题,因此是一门具有高度实用价值的学科。

工程断裂力学第三章(矿大)new

工程断裂力学第三章(矿大)new
接触断裂力学的读者来说,是比较困难的。因此,本章只 给出一些主要的概念和结果,并介绍一些工程近似方法。
3-1 裂纹的基本型
一般将裂纹问题分为三种基本型,如图所示
张开型
滑移型
撕裂型
裂纹基本型
第一种称为张开型(opening mode)或拉伸型(tension
mode),简称I型。其裂纹面的位移方向是在使裂纹张开的裂纹面
应变能的有界。
三种基本裂纹型裂端区某点的应力值、应变值、 位移值和应变能密度值都由应力强度因子及其位置来 决定。因此,只要知道应力强度因子,裂端区的应力、
应变、位移和应变能密度就都能求得。由于有这一特
点,应力强度因子可以作为表征裂端应力应变场强度 的参量。近代断裂力学,就是Irwin在五十年代中期提 出了应力强度因子的概念,认识到它的意义后才开始 发展起来的。
1/ 2


r 2 u K II 2 r 2 v K II 2
2 ( 1) 2 cos sin 2 2 2 ( 1) 2 sin cos 2 2
1/ 2
因子的方法,对很多常见裂纹问题的应力强度因子已汇集
成手册。因此,可以根据手册的结果,作一定的简化和近 似后,来解决工程问题。
裂纹的应力强度因子
应力强度因子的值由载荷、裂纹数目、长度和位置 以及物体的几何形状等共同决定。它的单位是 [ 力 ]•[ 长 度 ]-3/2 。 常 用 单 位 为 制 的 百 万 牛 顿 • 米 3/2(MN/m3/2)或用公制的公斤力•毫米-3/2。
由于I型裂纹是最主要的裂纹型,下面介绍一些标 准裂纹问题,给出实验室常用试件和工程零构件最常 见I型裂纹的应力强度因子(用K表示)。

断裂力学——3裂纹尖端应力场和位移场计算

断裂力学——3裂纹尖端应力场和位移场计算

K I lim Z I 2 a
0
Z ( )
a
2a
K lim 2 Z ( ) a
0
l ( a) Z Ⅲ ( ) ( 2a)
KI lim 2 ZI ( ) l a
z
z 2 a2 a 2
2
z
z
z
0
只有实部且为一常数
z 0 Z II
lim Z ' ( z ) lim
z
z
z
a
2 3/2

x y 0
xy
在裂纹表面
y0
z
z a
2
x a 处
2
满足平板周围的边界条件 虚数
12
K lim 2 Z ( )
0
Ⅱ型裂纹求解
第三步:用 Z ( z) 求II型裂尖附近的应力场和位移场
应力强度因子是在裂尖时 0 存在极限,若考虑裂尖附近 的一个微小区域,则有:
K 2 Z ( )
Z ( ) K 2
若以极坐标表示复变量 则可得到
8
Ⅱ型裂纹求解
得到II型裂纹问题各应力分量表达式为
x 2 ImZ y Re Z ' y y Re Z '
‘ xy Re Z y Im Z
进而可得到位移分量
(1 ) u= 2(1 ) Im Z yReZ E (1 ) (1 2 )ReZ y Im Z v= E
断裂力学第三讲
Shanghai University
断裂力学 Fracture Mechanics

(完整版)断裂力学与断裂韧性.

(完整版)断裂力学与断裂韧性.

断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。

自从四五十年代之后,脆性断裂的事故明显地增加。

例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。

而[σ],对塑性材料[σ]=σs /n,对脆性材料[σ]=σb/n,其中n为安全系数。

经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。

原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。

人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。

因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。

可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。

3.2 格里菲斯(Griffith)断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。

图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。

如金属受拉伸离开平衡位置,位移越大需克服的引力越大,引力和位移的关系如以正弦函数关系表示,当位移达到Xm 时吸力最大以σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。

可见理论断裂强度即相当于克服最大引力σc。

该力和位移的关系为图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
KⅡcossincos3 2r 2 2 2
xz yz 0
z (xy) 平面应变
z 0
平面应力
u4 K G Ⅱ 2r[(2k3)sin2sin32 ] v4 K G Ⅱ 2r[(2k2)cos2cos32 ]
3
k
1
平面应力
3 4 平面应变
14
Ⅲ型裂纹求解
对于I型和II型裂纹来说,是属于平面问题。但对于III型裂纹, 由于裂纹面是沿z方向错开,因此平行于xy平面的位移为零, 只有z方向的位移不等于零 对于此类反平面问题,前面给出的平面问题的基本方程已不 适用,因此不能沿用Airy应力函数求解,需要从弹性力学的 一般(空间)问题出发,推导公式。弹性力学一般问题的基 本方程,可以仿照平面问题的方法导出
Ⅲ型裂纹求解
选取函数 ZⅢ(z)
l z
z2 a2
满足边界条件
在裂纹表面 y 0 x a 处, Z III z 只有实部而无虚部,有 yz 0
满足裂纹表面处 的边界条件
当 y 或 x ,都有 ZIIT z l ,即 ReZIII zl
ImZIII z0
由非零应力分量公式知,yz l,xz 0
断裂力学第三讲 Shanghai University
断裂力学 Fracture Mechanics
郭战胜 davidzsguo@ 办公地点:延长校区力学所317室 平时答疑:每周一:5-6节 晚修答疑:每周一:18:00-20:30
地点:HE108或HE104b
1
裂纹尖端附近的应力场和位移计算
因为
ReZzReZz
x
ReZzImZz
y
ImZz ReZz
y
所以
2II x2
yReZII
z
2 y2II 2ImZIIzyReZIIz 2 xyII ReZIIzyImZIIz
8
Ⅱ型裂纹求解
得到II型裂纹问题各应力分量表达式为
x2Im ZyRZe'
y yReZ'
xyRZ eyIm Z‘
进而可得到位移分量
22
Z I I K 2 II K 2 II 3 2 2 K 2 IIrr 3 2 c o s3 2 is in 3 2
13
Ⅱ型裂纹求解
把上面两式代入前面应力表达式中,应力和位移场得表达式
xK 2 Ⅱ rsin2(2cos2cos3 2 )
xy
K Ⅱcos(1sinsin3) 2r 2 2 2
34
vK Ⅰ 4G
2r[(2k1)sin2sin32 ]
k 3 1
w 0 平面应变
wE (x y)dz
平面应变 平面应力
平面应力
5
Ⅰ型裂纹求解
需要注意的是,推导过程中,使用了 0 这个条件,所以
前面得到的应力场和位移场公式只适用于裂纹尖端附近区域,即要
r= a 求
。对于稍远处,应该用
ZⅠ ()
lim
z
Z
(z)
lim
z
lim
z
Z' (z)
lim
z
z 只有实部且为一常数
z2 a2
ZII z 0
a2
z2 a2
3/ 2
0
x y 0 xy
满足平板周围的边界条件
在裂纹表面 y 0 x a 处
Z(z)
z
z2a2
x
x2a2
虚数
ReZ(z)0
y xy 0
满足裂纹表面处的边界条件
u=(1) E
2(1)ImZ
yRZe
v=(1E)(12)RZe yImZ
平面应变
9
Ⅱ型裂y xy 0
在 y ,0 x a 处
zy0 xy 在 z 处
选取
Z(z)
z
z2 a2
能够满足全部边界条件。
10
Ⅱ型裂纹求解
z
x2Im ZyRZe' y yReZ' xyRZ eyIm Z‘
11
将坐标原点移到右裂尖,采用新坐标
Ⅱ型裂纹求解
za
Z()
a f() 2a
当 0 ,f ( ) 趋于常数,设:
li m 0f()li m 0 Z()K 2
右裂尖附近, 在很小范围内时
K
lim 0
2Z()
用解析函数求解II型裂纹尖端 应力强度因子的定义式
(+a)f()所示的
(2a)
Z
I
来确定应力分量和位移分量。
6
Ⅱ型裂纹求解
设无限大板含长2a的中心裂纹,无穷远受剪应力作用
7
Ⅱ型裂纹求解
第一步:解II型Westergaard应力函数
求解方法与I型基本相同,主要差别是无穷远处边界上受力条件不
同。选取应力函数
=yReZII
II x
yReZII z
yII ReZIIzyImZIIz
KI
2r
fij
xz yz 0
4
Ⅰ型裂纹求解
uE 1[(1)R eZ Ⅰ (1)yIm Z Ⅰ ] 平面应力
vE 1[2ImZⅠ (1)yReZⅠ ]
u1 E [(12)R eZ Ⅰ yIm Z Ⅰ ]
平面应变
v1 E[2(1)Im Z Ⅰ yR eZ Ⅰ ]
u4 K G Ⅰ 2r[(2k1)cos2cos32 ]
12
Ⅱ型裂纹求解
第三步:用 Z ( z ) 求II型裂尖附近的应力场和位移场
应力强度因子是在裂尖时 0 存在极限,若考虑裂尖附近 的一个微小区域,则有:
K 2Z()
Z ( )
K
2
若以极坐标表示复变量
ri er(co issin )
则可得到
Z()
K
(cos isin )
2r 2 2
yrsin2rsincos
2
3
Ⅰ型裂纹求解 x ReZⅠyImZⅠ y ReZⅠyImZⅠ xy yReZⅠ
z 0 (平面应力)
z(xy)2R eZ Ⅰ(平面应变)
xK 2 Ⅰ rcos2(1sin2sin3 2 ) 用张量标记可缩写成
y
K Ⅰcos(1sinsin3) 2r 2 2 2
ij
xy
KⅠcossincos3 2r 2 2 2
2xw2 2yw2 2w0
位移函数满足Laplace方程,所以为调和函数.
解析函数性质:任意解析函数的实部和虚部都是解析的.
1 w(x,y)GImZⅢ(z)
xzG w xIm xZⅢ Im ZⅢ
非零应力分量
yzG w yIm yZⅢR eZⅢ
边界条件:
y0, xa,yz 0 z ,xz0,yz
17
15
Ⅲ型裂纹求解
问题描述:无限大板,中心裂纹
z (穿透) 2 a ,无限远处受与
方向平行的 作用.
反平面(纵向剪切)问题, 其位移
w w (x,y),uv0
根据几何方程和物理方程:
rxz
w x
G1 xz
ryz
w y
1
G
yz
xyxyz0
16
Ⅲ型裂纹求解
单元体的平衡方程:
xz yz 0
x y
相关文档
最新文档