《相似三角形》导学案
相似三角形导学案

课题:27.2.2相似三角形的性质学习目标:1. 了解相似三角形对应线段的比等于相似比;2. 了解相似三角形面积比等于相似比的平方;3. 会用相似三角形的性质解决相关问题.活动方案:活动一:知道“相似三角形对应线段的比等于相似比,面积比等于相似比的平方” 勇于探究,挑战自我1.如图:ΔABC ∽ΔA ′B ′C ′ ,相似比为k ,猜测一下它们的对应高、对应中线、对应角平A D ''= ABC A B C s s '''∆∆=通过探究你得到的结论是:1.相似三角形对应线段的比等于 .2.相似三角形周长的比等于 .3.相似三角形面积的比等于 .2.练习(1)已知ΔABC 与ΔDEF 的相似比为2:3,则对应中线的比为 ,对应角平分线的比为 ,周长比为 ,面积比为 .(2) 已知ΔABC ∽ΔA ′B ′C ′,面积比为16:9,则相似比为 ,对应高的比为 ,周长比为 。
(3) 已知ΔABC ∽ΔA ′B ′C ′它们对应中线的比为1:3,ΔABC 的面积为2,周长为4,则ΔA ′B ′C ′的面积等于 ,周长等于 . 活动二:运用新知,提升自我 1. 如图,在ΔABC 和ΔDEF 中,AB =2DE ,AC =2DF ∠A =∠D .若ΔABC 的边BC 上的中线为8,面积为求ΔDEF 的边EF 上的中线和面积.2. 如图,点E 是平行四边形ABCD 的边AB 的延长线上一点,且AB = 4 BE ,连接DE 交BC 于点F .(1)求BF AD 的值 (2)若S △BEF =2,求平行四边形ABCD 的面积课堂小结:检测反馈1.2.如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且21==FC AF EB AE ,若△AEF 的面积为2,则四边形EBCF 的面积为_________. 3. 如图,ΔABC 和ΔDEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,ΔABC 的周长是24,面积是48,求ΔDEF 的周长和面积。
《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的周长比、面积比与相似比之间的关系。
3、能运用相似三角形的性质解决简单的实际问题。
二、学习重点1、相似三角形的性质的理解和应用。
2、相似三角形周长比、面积比与相似比的关系。
三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。
四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。
2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。
解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。
解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。
设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。
(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。
解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。
六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。
【九年级】相似三角形导学案

【九年级】相似三角形导学案4.2相似三角形[学习目标]1.了解相似三角形的概念,会表示两个三角形相似.2.能够使用相似三角形的概念来判断两个三角形的相似性3.理解“相似三角形的对应角相等,对应边成比例”的性质.[学习重点和难点]学习重点:相似三角形的概念学习难点:找出特定图形中相似三角形的对应边,写出比例公式。
你需要有一定的决心[前自学,中交流]一、合作学习与探索新知识1、将图1中△abc的边长缩小到原的,并画在图1中,记为△(点,,分别对应点a,b,c).问题讨论1:相应角度之间的定量关系是什么△ 和△ ABC?问题讨论二:△与△abc对应边之间有什么数量关系?图12、(1)相似三角形的定义:(2)如果△ 类似于△ ABC,马克△ ABC和阅读:△ 基础知识(3)几何语言表述图1中△与△abc相似:∵∠a=,∠b=,∠c=∴△△abc3.(1)相似三角形的性质:(2)相似三角形对应边的,叫做相似三角形的相似比(或相似系数)。
两者之间的相似性比率是多少△ 和△ 图1中的ABC?两者之间的相似性比率是多少△ ABC和△?二、应用新知例1如图2所示,D和E分别是AB侧和AC侧的中点。
验证:△ 艾德≓△ 基础知识找一找:已知:如图2,图3,图4,根据3个图形,分别写出他们的对应角和对应边的比例式.(1) △ 基础知识≓△ 阿德,公元前(2)△abc∽△ade,其中∠ade=∠c(3) △ 基础知识≓△ 阿德,公元前例2如图2,△abc∽△ade.已知ad:db=1:2,bc=9?,求de的长.变量:如图5所示,△ 基础知识≓△ 艾德,艾德=2?,ab=6ac=4找出AE的长度[当堂训练]整合工作:1.下列说法正确的是:① 两个等腰三角形必须相似② 两个直角三角形必须相似③ 两个等边三角形必须相似④ 两个等腰直角三角形必须相似⑤ 两个全等三角形必须相似2.如图,d是ab上一点,△abc∽△acd,且a d:ac=2:3,ad=4,∠adc=65°,∠b=43°(1)计算∠ ACB和∠ ACD;(2)写出△abc与△acd的对应边成比例的比例式,求出相似比..3.在以下两组图形中,每组的两个三角形相似。
相似三角形导学案

3.4.1 相似三角形的判定学习目标:1、了解相似三角形的判定方法:用平行法判定三角形相似;2、会用平行法判定两个三角形相似。
学习重点:用平行法判定两个三角形相似学习难点:平行法判定三角形相似定理的推导学习过程:一、问题导入:1、同学们,还记得什么是相似图形吗?相似的图形具有怎样的特征呢?2、在实际生活中你见过的哪些三角形是相似的?怎样判定两个三角形相似呢?二、出示目标:三、自主研读:学生自学教材77页至78页四、合作探究:如图,在△ABC中,D为AB任意一点,过点D作BC的平行线DE,交AC于点E。
(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?从而我们可以得出相似三角形的判定方法:平行于的直线与相交,截得的三角形与原三角形。
五、展示提升:1、如图,点D为△ABC的边AB的中点,过点D作DE∥BC,交AC于点E,延长DE至点F,使DE=EF,求证:△CFE∽△ABC.2、如图,在ABCD中AE=EB,AF=2,求FC的长。
3、书本78页第一个练习题4、书本79页第二个练习题六、达标检测:1、在ABCD中,AE=,连接BE交AC于点F,AC=12,则AF=_____。
2、如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B落在AD的F处,若四边形EFDC~四边形ABCD,则AD=_____。
3、已知Rt△ABC~Rt△BDC,且AB=3,AC=4,求CD的长。
4、矩形草坪的长为50m,宽为20m,沿草坪四周修等宽的小路,能否使小路内外边缘的两个矩形相似,说明理由。
相似三角形的判定定理1学习目标:1、了解相似三角形的判定定理1:两角分别相等的两个三角形相似;2、会用相似三角形的判定定理1判定两个三角形相似。
学习重点:运用相似三角形的判定定理1证明两个三角形相似学习难点:理角相似三角形判定定理1的推导过程学习过程:一、问题导入:观察你与老师的一个三角板(含30°,60°角的),这两个三角板的外围的三角形的三个内角有什么关系?它们所在的三角形相似吗?二、出示目标:三、自主研读:学生自学教材79页至80页四、合作探究:''',使∠A′=∠A,∠B′=∠B.任意画△ABC和△A B C(1)∠C=∠C′吗?(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么收获?如何证明上题中两个三角形相似呢?证明:由此我们可以得出相似三角形的判定定理1:此定理用数学式子表示为:五、展示提升:1、在△ABC中,∠C=900,从点D分别作边AB,BC的垂线,垂足分别为点E、F,DF与AB交于点H,求证:△DEH~△BCA。
相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
《相似三角形》导学案

4.3相似三角形【学习目标】 1.使学生理解并掌握相似三角形的概念,理解相似比的概念.2.使学生掌握预备定理,并了解它的承上启下的作用.3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.【学习重点难点】重点:相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.难点:是相似比的概念及找对应边.ABC经某一′对应角之间有什么关系?对应边之间有什么关系?两个三角形,叫做相似三角形.2A B C D E C A D EB (2)C ADE B(2)45°85°n °3a 10A B CA概念:相似三角形对应边的比,叫做两个三角形的 。
(或相似系数)做一做如图, △ADE ∽ △ABC,点D 与点B 是对应点, 根据图形分别说出两个三角形的对应边和对应角?如果△ABC ∽△A'B'C'则△ABC 与△A'B'C'的相似比k 1△A'B'C'与△ABC 的相似比k 2=?归纳:三角形的前后次序不同,所得相似比不同。
交流讨论1、两个全等三角形一定相似吗?为什么?2.两个直角三角形一定相似吗?为什么?两个等腰直角三角形呢?3.两个等腰三角形一定相似吗?为什么?两个等边三角形呢?例1 已知:如图,D 、E 分别是AB 、AC 边的中点。
求证:△ADE ∽△ABC随堂练习1、在下面的两组图形中,各有两个相似三角形,试确定x ,y ,m ,n 的值.''C B BC =BC C B ''=3A B CD E A D C B 第1题C B O AD 第2题例2:如图,D 、E 分别是△ABC 的AB,AC 边上的点, △ABC ∽ △ADE.已知AD:DB=1:2,BC=9cm,求DE 的长练习:1.如图,D 是AB 上的一点。
△ABC ∽ △ACD ,且AD :AC =2:3,∠ADC= 65°, ∠B =43 °. (1)求∠ABC , ∠ACD 的度数;(2)写出△ABC 与 △ACD 的对应边成比例的比例式,求出相似比。
相似三角形导学案

4.5 《相似三角形》导学案一、教学目标1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.二、教学过程1.相似三角形的定义及记法如果△ABC ∽△DEF ,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?由前面相似多边形的性质可知,对应角应相等,对应边应成比例.所以∠A =∠D 、∠B =∠E 、∠C =∠F .EFBC DF AC DF AC DE AB ===. 2.(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?解:(1)两个全等三角形一定相似.因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.(2)两个直角三角形不一定相似.因为虽然都是直角三角形,但也只能确定有一对角即直角相等,其他的两对角可能相等,也可能不相等,对应边也不一定成比例,所以它们不一定相似.两个等腰直角三角形一定相似.因为两个等腰直角三角形Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,则∠A =∠B =∠D =∠E =45°,所以有∠A =∠D ,∠B =∠E ,∠C =∠F .再设△ABC 中AC =b ,△DEF 中DF =a ,则AC =BC =b ,AB =2bDF =EF =a ,DE =2a ∴DEAB EF BC DF AC == 所以两个等腰直角三角形一定相似.(3)两个等腰三角形不一定相似. 因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.两个等边三角形一定相似.因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.[师]由上可知,在特殊的三角形中,有的相似,有的不相似.两个全等三角形一定相似.两个等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.3.例题1.如图,有一块呈三角形形状的草坪,其中一边的长是20 m ,在这个草坪的图纸上,这条边长5 cm ,其他两边的长都是3.5 cm ,求该草坪其他两边的实际长度.解:草坪的形状与其图纸上相应的形状相似,它们的相似比是2000∶5=400∶1 如果设其他两边的实际长度都是x cm ,则14005.3 x x =3.5×400=1400(cm )=14(m )所以,草坪其他两边的实际长度都是14 m .2.如图,已知△ABC ∽△ADE ,AE =50 cm,EC =30 cm,BC =70 cm,∠BAC =45°,∠ACB =40°,求(1)∠AED 和∠ADE 的度数;(2)DE 的长.解:(1)因为△ABC ∽△ADE .所以由相似三角形对应角相等,得∠AED =∠ACB =40°在△ADE 中,∠AED +∠ADE +∠A =180°即40°+∠ADE +45°=180°,所以∠ADE =180°-40°-45°=95°.(2)因为△ABC ∽△ADE ,所以由相似三角形对应边成比例,得 BCDE AC AE = 即70305050DE =+ 所以 DE =30507050+⨯=43.75(cm ).。
相似三角形的性质及其应用-导学案

3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。
知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。
实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。
2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。
3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。
知识点3:性质定理3:相似三角形的周长比等于相似比。
实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。
2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。
3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。
知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。
实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。
2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。
3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。
(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。
解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形》导学案
一、知识链接 全等三角形对应角 ,对应
边 。
如图,'''C B A ABC △△≅,写出两个三角形的对应角: 对应边:
你是怎样找到的?
二、探究新知 <相似三角形>
1、观察上图,有没有形状相同的三角形?它们分别是
2、FD
CA EF BC DE AB ,,的大小相等吗?你是怎样观察出来的?(利用网格
优势)
3、F C E B D A ∠∠∠∠∠∠与与与,,的大小相等吗?为什么?
4、根据上面的观察我们可以得知:ABC △与DEF △的对应角相等,对应边成比例,即F C E B D A ∠=∠∠=∠∠=∠,,;
FD
CA EF BC DE AB == ★像这样,三角 ,三边 的两个三角形叫做相似三角形。
ABC △与DEF △相似,记作
温馨提示:记两个三角形相似与记两个三角形全等一样,通常把表示对应顶点的字母写在对应位置上。
★相似三角形 的比,叫做相似比。
如上图ABC △与DEF △的相似比是
而DEF △与ABC △的相似比是 。
那么ABC △与DEF △的相似比,和DEF △与ABC △的相似比有什么关系? 当这两个相似比相等时,ABC △与DEF △之间有什么关系?
三、应用新知(一)
判断:
⑴两个全等三角形一定相似。
( )
⑵两个等腰直角三角形一定相似。
( )
⑶两个直角三角形一定相似。
( )
⑷两个等边三角形一定相似。
( )
⑸两个等腰三角形一定相似。
( )
★如果ABC △与DEF △相似,那么对应角 ,对应
边 。
A C
B 'A '
C 'B A C B
D F
E M P N
例题:如图,已知ABC ADE ∽△△.
(1)如果,40,45 =∠=∠ACB BAC 求
ADE AED ∠∠和的度数;
(2)如果,70.30,50cm BC cm EC cm AE ===求DE 的长.
解(1)∵△ADE ∽△ABC
∴∠AED= ∠ = °
又 45=∠BAC
∴∠-︒=∠180ADE -∠ = °
(2)∵△ADE ∽△ABC
∴())(AE DE =(相似三角形对应边成比例) 请你继续完成
四、应用新知(二)
1、如图,
80,45,''' =∠=∠C B C B A ABC ∽△△
求''',,,C B A A ∠∠∠∠的度数.
2、如图,AD,BE 相交于点C ,DEC ABC ∽△△, .48,30,20,22====DE EC BC AC (1)指出两个相似三角形的对应边; (2)求AB,CD 的长.
3、如图,已知,3,cm AB DEF ABC =∽△△ .6,2,4cm EF cm CA cm BC ===
求线段DE,DF 的长。
4、已知等腰直角三角形ABC
与等腰直角三角形'''C B A 相似,相似比为3:1,ABC △的斜边.5cm AB =
(1)求'''C B A △的斜边''B A 的长; (2)求斜边''B A 上的高.
6、如图,已知
,90, =∠=∠ADB ABC ADB ABC ∽△△ ,4,5cm AB cm AC ==求AD 的长。
E D C A B A E D C B E F
D
C B A 'C 'B 'A C B A A
D C B。