相似三角形(导学案)
4.5-相似三角形判定定理的证明--导学案

中宁二中 4.5 相似三角形判定定理的证明导学案主备:万银华 审核: 2014-11-17 一、学习准备:判定定理1:两角 的两三角形相似;判定定理2:两边 两个三角形相似; 判定定理3: 的两三角形相似. 二、学习目标:1、相似三角形的判定定理;2、相似三角形的判定定理的证明; 三、自学提示: 自主学习:独立证明三个判定定理。
见书P99页。
(用作业纸写上,贴于导学案上) 例题: 例1、如图,在平行四边形,过点B 作BE CD ⊥,垂足为E ,连接AE,F 为AE 上一点,且BFE C ∠=∠. (1)求证:△ABF ∽△EAD ; (2)若AB=4,30BAE ∠=︒,求AE 的长; (3)在(1)(2)的条件下,若AD=3,求BF 的长.变式演练:如图四边形ABCD 是平行四边形,点F 在BA 的延长线上连结CF 角AD 于点E. (1)求证:△CDE ∽△FAE ;(2)当E 是AD 的中点,且BC=2CD 时,求证:F BCF =∠.例2、已知DE ∥⊥AB ,EF ∥BC 求证:△DEF ∽△ABC.四、学习小结: 五、夯实基础:1、如图,已知在△ABC 中,AB=AC, 36A ∠=︒,BD 是B ∠的角平分线,试利用三角形相似的关系说明AD 2=DC ·AC.2、如图已知在△ABC 中,AB=AC,AD 是BC 边上的中线,CF ∥BA ,BF 交AD 于点P ,交AC 于点E ,求证:BP 2=PE ·PF.六、能力提升:1、如图,∠ACD=∠B ,DE ⊥BC , 则图中共有 对相似三角形.2、在△ABC 中,点D 在线段BC 上,,816BAC ADC AC BC ∠=∠==,,求CD.3、如图,D 在AB 上,且DE ∥BC 交AC 于E 、F 在AD 上,且AD 2=AF ·AB 求证:△AEF ∽△ACD.布置作业: 【评价反思】。
2022年苏科版九年级数学下册第六章《相似三角形复习》导学案

新苏科版九年级数学下册第六章《相似三角形复习》导学案一、知识要点:1、相似三角形的定义:对应角相等,对应边成比例的三角形叫做相似三角形;应注意:△ABC ∽△C B A '''与△C B A '''∽△ABC 的相似比互为倒数,当k=1时,两个三角形全等。
2、预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似,这是今后证明三角形相似的重要依据。
3、三角形相似的判定定理:定理1:两角对应相等,两三角形相似;定理2:两边对应成比例且夹角相等,两三角形相似; 定理3:三边对应成比例,两三角形相似。
推论1:斜边和直角边对应成比例,两直角三角形相似; 推论2:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 4、黄金分割、位似图形、中心投影和平行投影、实际应用。
二、典型例题: (一)、求线段长或线段比例1 雨后初晴,一学生在运动场上玩耍,从他前面2m 远一块小积水处,他看到了旗杆的倒影,如果旗杆底端到积水处的距离为40 m ,该生眼睛的高度是1.5 m ,那么旗杆的高度是______.例2 如图2所示,在△ABC 中,AD 是BC 边上的中线,F 是AD 上一点,CF 的延长线交AB 于点E ,若AF : FD =1:3,则AE :EB =___________;若AF :FD =1:n(n>0),则AE :EB =________.解析 过D 作DG ∥AB 交CE 于G .由于D 是BC 的中点,可知DG 是BCE 的中位线,解:(二)、求周长与面积或周长与面积比例3 如图,已知:△ABC 中,AB=5,BC=3,AC=4,PQ//AB ,P 点在AC 上(与点A 、C 不重合),Q 点在BC 上. (1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长;(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长;例 4 如图3所示,在□ABCD 中,E 为DC 边的中点,AE 交BD 于D .若S △DOE =9 cm 2,则S △AOB 等于( )(A)18 cm 2 (B)27 cm 2 (C)36 cm 2 (D)45 cm 2(三)、证明比例线段例5 如图4所示,已知正方形ABCD 中,O 是AC 与BD 的交点, ∠DAC 的平分线AP 于点P ,∠BDC 的平分线DQ 交AC 于点Q ,求证:BD APCD BQ=. (四)、实际应用举例例6 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷,经过了解,教学楼、水塔的高分别是20 m 和30 m ,它们之间的距离为30 m ,小张身高为1.6 m ,小张要想看到水塔,他与教学楼之间的距离至少应有多少米?三、易混淆概念1、比例线段的相关概念在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项, d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
相似三角形的判定(1)导学案ywm

3.3.1相似三角形的判定(一)【学习目标】(1) 会用符号“∽”表示相似三角形如△ABC ∽ △A′B′C′; (2) 知道当△ABC 与△A′B′C′的相似比为k 时,△A′B′C′与△ABC 的相似比为1k .(3) 掌握两边对应成比例,夹角相等的两个三角形相似的判定方法。
【学习重点】理解掌握三边对应成比例的两个三角形相似的判定方法及应用.【学习难点】 运用三边对应成比例的两个三角形相似判定三角形相似. 一、知识回顾平行于三角形一边与其它两边(或其延长线)相交,所截得的对应线段_________。
1、如图:MN//BC,则: ①AM AN =______=______. ②AM AB =______=______. 2、如图,DE//BC ,则: ①ADAB =______=______. ②BDAB=______. 3、把一个△ABC 放大后得到△A′B′C′,那么△ABC 与△A′B′C′有什么关系?①放大后AB 边对应______,BC 边对应______,AC 边对应ABCM NC BA A′B′C′______,∠A 对应______,∠B 对应______,∠C 对应______. ②对应边有什么关系?对应角有什么关系? 二 合作探究阅读教材P “说一说”,思考下列问题:1、什么叫作相似三角形?如何表示相似三角形? 在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB A ′B ′=BC B ′C ′=AC A ′C ′=k .我们就说△ABC 与△A′B′C′相似,记作:△ABC ∽△A′B′C′,对应边的比AB A ′B ′=BC B ′C ′=ACA ′C ′=k 叫△ABC 与△A′B′C′的相似比.【注意】①△A′B′C′与△ABC②两个相似三角形的相似比具有顺序性。
根据相似三角形的定义,不难得到相似三角形性质:△ABC ∽△A′B′C′══>⎩⎨⎧∠A=_____、∠B=_____、∠C=____.AB A ′B ′=BC B ′C ′=AC A ′C ′2、【问题】如果k=1,这两个三角形有怎样的关系?3、【问题】已知:如图,DE//BC.求证:△AD E ∽△ABC.∵D E ∥BC∴∠B=∠ADE, ∠C=∠AEDAD AB =AE AC =DEBC;又:∠A=∠A∴△ADE ∽△ABC (相似三角形定义) 【归纳总结】相似三角形判定预备定理:平行于三角形一边的直线截其他两边(或两边延长线),所得的三角形与原三角形_________.∵D E ∥BC ∴△ABC ∽△ADE【注意】平行截相似的三种基本图形。
相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
《相似三角形的性质(2)》导学案

6.5相似三角形的性质(2)学习目标1.运用类比的思想方法,通过实践探索得出:相似三角形对应线段(高、中线、角平分线)的比等于相似比;2.会运用相似三角形对应高的比与相似比的性质解决有关问题.学习过程一:“学”——自主学习复习回顾:如图,△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比是2:3,则△ABC 与△A’B’C’的面积比是多少?你的依据是什么?回顾“相似三角形的面积比等于相似比的平方”这个结论的探究过程,你有什么发现?合作探究:活动一:如图,△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比是k ,AD 、A ′D ′是对应高.A A ′B ′ BC C ′D CB AD ’ A ′ C ′B ′D' A' B' C' D A B C D' A' B' C' D A B C结论:相似三角形对应高的比等于___________.活动二、相似三角形对应中线的比、对应角平分线的比与相似比的关系。
结论:相似三角形对应中线的比、对应角平分线的比等于 。
二:“思”——乐学精思例1、 如图,AF 是△ABC 的高,点D 、E 分别在AB 、AC 上,且DE ∥BC ,DE 交AF 于点G 。
设DE=6,BC=10,GF=5,求点A 到DE 、BC 的距离。
三:“练”——巩固反馈自主训练1.两个相似三角形的相似比为2:3,它们的对应角平分线之比为_______,周长之比为_______,面积之比为________2.若两个相似三角形面积之比为16:9,则它们的对高之比为_____,对应中线之比为_____3.如图,△ABC ∽△DBA ,D 为BC 上一点,E 、F 分别是AC 、AD 的中点,且AB =ABA'B'C' 32cm 20cmO28cm,BC=36cm,则BE:BF=________4、如图,D、E分别在AC、AB上,∠ADE=∠B,AF⊥BC,AG⊥DE,垂足分别是F、G,若AD=3,AB=5,求:(1)AGAF的值.(2)△ADE与△ABC的周长的比,面积的比.5、如图:与小孔O相距32cm处有一支长30cm燃烧的蜡烛AB,经小孔,在与小孔相距20cm的屏幕上成像,求像A'B'的长度。
相似三角形的性质及其应用-导学案

3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。
知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。
实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。
2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。
3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。
知识点3:性质定理3:相似三角形的周长比等于相似比。
实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。
2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。
3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。
知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。
实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。
2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。
3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。
(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。
解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。
4.7 相似三角形的性质 第一课时导学案

丹东市第二十四中学 4.7 相似三角形的性质 第一课时 主备:孙芬 副备:李春贺 曹玉辉 审核: 2014-9-15 一、学习准备:_______________________的两个三角形相似;________________________的两个三角形相似;_________________________的两个三角形相似。
时,两三角形相似?则当若相似吗?则两三角形中,和在相似吗?和则中,和在===∠=∠========∆∆∆∆=∠=∠=∠=∠∆∆111111111111110000,3,100,10,53.,2,35,37,5,6,7A 2.,72,68,40,681.C A B A A A AC AB A C C B B A AC BC AB C B ABC DEF ABC F E B A DEF ABC二、学习目标:1.掌握相似三角形的性质的对应高、对应中线、对应角平分线的比存在的等量关系。
2.进一步巩固三角形相似的判定定理,并能进行相应性质的推导。
3.能熟练运用三角形相似的性质进行量的计算。
4.培养学生分析问题、解决问题的综合能力。
三、自学提示: (一)合作探究:..5.B .4.3.A ABC 2.,,1.,431111111111111111111111111111111F B BFC A AC F B BF E A AEC A BAC E A AED A ADC B BCD A AD C B C A ACC B BC B A AB C B A ABC 边上的中线,求和分别是和若的平分线,求和分别是和边上的高,求和分别是和若相似吗?与各等于多少?解决下列问题:可以得到三角形零件的,如根据图纸上的图纸制作三角形零件:,按照比例尺为钳工小王利用一张铁皮∠∠∆∆∆∆ 定理:(二)自主学习:1.相似三角形的对应边的比值相等( ) 相似三角形角平分线的比等于高线的比( ) 若△ABC ∽△A 1B 1C 1的对应中线AD :A 1D 1=k,则边AB :A 1B 1=k( )2.若△ABC ∽△A 1B 1C 1,对应角平分线AD :A 1D 1=1:4,那么这两个相似三角形的对应中线的比为__________;对应高线的比为_________;相似比为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5相似三角形(教、学案)
淄川区双沟中学马莹
学习目标:
1、探索相似三角形的本质特征,初步认识特殊与一般之间的辨证关系。
2、运用相似三角形的本质特征解决问题。
学习重点:
相似三角形本质特征的正确运用。
教学过程:
一、明确学习目标。
(学生阅读,并注意关键词)
二、探索新知。
(一)相似三角形的本质特征:
1、什么是相似多边形?什么是相似比?(口答)
2、你认为相似多边形与相似三角形有什么关系?(口答)
3、的两个三角形叫做相似三角形。
相似三角形的叫做相似比。
4、请判断,下列两个三角形是否一定相似?为什么?
(1)两个全等三角形
(2)两个直角三角形(3)两个等腰直角三角形
(4)两个等腰三角形(5)两个等边三角形
5、已知△ABC∽△DEF,你会得到哪些结论?
D
B
C E F
A
6、新知归纳:
如图
∵ ∴△ABC ∽△DEF ∵△ABC ∽△DEF
∴
(二)相似三角形本质特征的应用:
(1) 例1中有相似三角形吗?若有,它们分别是谁?
(2) 它们的相似比400:1是怎么算出来得?(注意长度单位
的换算)
(3) 例1怎样运用相似比求出草坪其他两边的实际长度的?
(4) 例1用到哪些知识点?
D B
E A
三、课堂训练:
1、(牛刀小试)在下图中,若△ABC ∽△ADE ,试确定x 、y 的值。
思考:你能找到对应角吗?它们有什么关系?
图中有互相平行的线段吗?
2、(能力提高)如图,已知△ABC ∽△ADE ,AE=50cm ,EC=30cm ,BC=70cm ,∠ACB=40°。
(1)求∠AED 的度数。
(2)求DE 的长度。
(3)你还能找到哪些相等的角?图中有互相平行的线段吗?
(4)图中有哪些成比例的线段?
四、课堂小结:
谈谈这节课的收获。
x B D 33 E C 22 30 A 48 y B
C
E D A
五、达标测试:(请独立完成)
1、已知⊿ABC ∽⊿DEF ,AB=3cm ,BC=4cm ,CA=2cm ,EF=6cm 。
线段DE= ,DF= 。
2、两个三角形相似,其中一个三角形的两内角分别为50°和60°,求另一个三角形的最大内角和最小内角。
3、已知等腰直角△ABC 与等腰直角△A ′B ′C ′相似,相似比为3:1,斜边AB=5cm 。
(1)求△A ′B ′C ′的斜边A ′B ′的长;
(2)求斜边AB 和A ′B ′上的高。
4、(选做) 已知△ABC 与△DEF 相似,△ABC 的三边为2、3、4, △DEF 的一边为8,求其余两边。
B C E F A D。