去极化腐蚀
去极化3-4 高温腐蚀理论 教学课件

扩散控制腐蚀速度时:腐蚀速度与材料无关, 但与阳、阴极面积和形状有关。阳极面积增 加,腐蚀速度减小。
1、在宏观电池中(扩散控制时)
随S阴/S阳增加,腐蚀速度加大;在浓差控 制时,阴极面积变化对腐蚀速度有较大影响。
6、去极化
概念
一、阳极去极化原因 1去电阻极化(活性离子等) 2去浓差极化(搅拌,络合剂)
二、阴极去极化原因 1去电化学极化 (阴极反应) 2去浓差极化 (搅拌,络合剂)
氢去极化过程示意图
各金属氢电极的极化曲线
ηH=a+blogi b=2χ2.3RT/nF
8、 氧去极化与吸氧腐蚀
一、氧去极化吸氧腐蚀 二、氧去极化腐蚀速度 三、氧去极化吸氧腐蚀的特点 四、影响因素
2、在微观电池中 在许多金属合金的吸氧腐蚀速度几乎与微阴极
面积无关。(有两种解释:伊文思,托马晓夫)。
1、伊文思解释
2、托马晓夫解释
1、氧去极化腐蚀定义
氧在阴极上吸收电子起到消减阴极极化作 用。
O 24H 4e 2H 2O(+1.229 V) O 22H 2 O 4 e 4 O H (+0.815 V)
2、氧去极化腐蚀条件
Ea EO
E 1 . 2 2 9 0 . 0 5 9 p H 0 . 0 1 4 8 P O 2
Ea EHEO
氧去极化过程分为两个步骤:
1、输送氧到阴极
(V
)
1
2、在阴极上发生去极化反应(V 2 )
氧分子在对流、扩散的作用下运动;
(1)在溶液中 (2)在电极附近 ,通过滞流层是控制因素。 (3)在阴极上发生还原反应
第一章 电化学腐蚀基础24

腐蚀极化图的应用 初始电位差对最大腐蚀电流的影响
E
当腐蚀电池的欧姆电阻 R→0,由腐蚀极化图可以 看出,阴极与阳极初始电 位差越大,腐蚀电流就越 大。即腐蚀原电池的初始 电位差是腐蚀的驱动力。
Ec P a` E a` E c` P c` Ea I3 I2
Pc
Pa
I1
I
腐蚀极化图的应用
极化性能的影响
去极化
阳极去极化的原因 阳极钝化膜被破坏 降低阳极表面的金属离子的浓度。
阳极产物—金属离子加速离开金属/溶液界 面、一些物质与金属离子形成络合物,均 会使金属表面离子浓度降低。
去极化 阴极去极化的原因
阴极上积累的负电荷得到释放
使去极化剂容易达到阴极以及使阴极反应产
物容易迅速离开阴极。如搅拌、加络合剂可使阴
Ee,c Ee,a Ec Ea IR
腐蚀极化图的应用
用 Pa 、Pc 分别表示阳极和阴极的极化率 , Ea I Pa,
Ec I Pc, 则 :
I
E e ,c E e , a Pa Pc R
由上式可知腐蚀电流受腐蚀电池的电动势,阴、阳极极化 率和欧姆电阻四个因素的影响。对具体某一腐蚀过程的腐 蚀速度起决定作用的因素叫做腐蚀控制因素。各项阻力对 于整个腐蚀过程的总阻力的比值的百分数叫做各项阻力对 整个腐蚀过程控制的程度。即 :
极化原因
2、阴极极化的原因
①阴极过程是消耗电子的过程。若阴极接受电子的物质由 于某种原因,与电子结合的速度跟不上阳极电子的迁移速 度,则使阴极处有电子的堆积,电子密度增大,使阴极电 位越来越负,即产生阴极极化。这种由于阴极过程进行缓 慢而引起的极化称为活化极化或电化学极化。 ②由于阴极表面的反应物或生成物的扩散速度较慢,小于 阴极反应速度,导致阴极附近的反应物的浓度小于整体溶 液的浓度,生成物的浓度大于整体溶液的浓度,结果使阴 极电位降低,即产生阴极极化。这种由于扩散过程缓慢而 引起的极化称为浓差极化。
氢去极化腐蚀与氧去极化

• 可知,当阴极电流为零时,氢平衡电位为 e,H ;
• 在氢电极旳平衡电位下将不能发生析氢反应。
• 随阴极电流旳增长,阴极极化程度增长,阴极电 位向负移动旳趋势增大;
• 当阴极电位负到 k 时才发生析氢反应,k为析氢
电位。析氢电位与氢平衡电位之差为析氢过电位,
用ηH表达。
•
H e,H k
• ηH是电流密度旳函数,只有相应旳电流密度旳数 值时,过电位才具有明确旳定量意义。
铝和不锈钢在稀硫酸中属于阳极控制旳腐蚀过程
氢去极化腐蚀旳特征
1.阴极反应浓度极化较小,一般能够忽视,其原因 A 去极化剂是带电旳,半径很小旳氢离子,在溶液中有较大旳迁移能力和扩 散能力 B 去极化旳浓度较大,在酸溶液中去极化剂是氢离子,在中性或碱性溶液中 水分子 可按下式进行反应 H2O+ e=H吸附+OHC 氢气泡旳搅拌作用
• • 上式表c 白 Rn,FT 阴 2极.3l过g1程 与iiD 电极材料无关,而完全取
决于氧旳极限扩散电流密度。
3)阴极过程由氧旳离子化反应与氧旳扩散过程混 合控制,即V输=V反。
• 当 ic 为1/2 iD<i<iD时,阴极过程与氧旳离子化反 应及氧旳扩散过程都有关,即由活化极化与浓 差极化混合控制。
第三章 氢去极化腐蚀与氧去极 化腐蚀
氢去极化是常见旳危害性较大旳一类腐 蚀
氧去极化腐蚀是自然界普遍存在,因而 破坏性最大旳一类腐蚀
3.1 电化学腐蚀旳阴极过程
去极化
• 能消除或克制原电池阳极或阴极极化过程旳均叫 作去极化。
• 能起到这种作用旳物质叫作去极剂,去极剂也是 活化剂。
• 对腐蚀电池阳极极化起去极化作用旳叫阳极去极 化;
金属在酸中腐蚀旳阳极过程
2-33极化与去极化

第四节 极化与去极化以上己节讨论了金属电化学腐蚀的热力学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等人们最为关心的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,认清极化和去极化规律对研究金属的腐蚀与保护有重要的意义。
一、极化作用我们已经知道,电化学腐蚀是由于腐蚀电池的作用而引起的,腐蚀电池产生的腐蚀电流的大小可以用来表示电化学腐蚀的速度。
根据欧姆定律,腐蚀电流c a V V I R-=(2-7) 式中 I ——腐蚀电流强度(A ); c V ——阴极电极电位(V );a V ——阳极电极电位(V );R ——腐蚀体系总电阻(包括R R 外内+)(Ω)。
按理将此带入式(2-5)或(2-6)就可算出理论腐蚀速度,然而通过试验测定的腐蚀速度与计算值相差甚远,计算值可以达到实测值的几十倍甚至上百倍。
进一步的研究发现,造成这一差别的结果是腐蚀电池的阴、阳极电位的电流通过时发生了明显的变化,阴极电位变负而阳极电位变正,使得阴、阳极间的电位差(c a V V -)急剧缩小。
如果把无电流通过时的电极电位叫做电极的起始电位,以平衡电位的符号e V 表示,那么腐蚀电池的起始电位差远大于其变化以后的电位差(ec ea c a V V V V ->>-),如图2-10所示,正因如此,计算所得腐蚀速度远大于实测的腐蚀速度。
极化就是指由于电极上通过电流而使电极电位发生变化的现象。
阳极通过电流电位向正的方向变化叫阳极极化。
阴极通过电流电位向负的方向变化叫阴极变化。
无论阳极极化或阴极极化都能使腐蚀原电池的极间电位差减小,导致腐蚀电流减小,阻碍腐蚀过程顺利进行。
极化又称极化作用、极化现象。
二、极化曲线试验证明,极化与电流密度关系密切,电流密度越大,电位变化幅度也越大。
所谓极化曲线就是表示同一电极上电极电位与电流密度之间变化关系的曲线。
利用图2-11的装置,就可以测定腐蚀电池的阴、阳极极化曲线。
当R →∞时,相当于短路状态,通过电极的电流为零,电极的电位相当于起始电位;随着R 的减小,电流逐渐增大,逐点测量电流强度(再折算成电流密度)及其对应的阴、阳极电位,经整理在图上就可以分别得到阴、阳极极化曲线。
材料腐蚀与防护-第四章-电化学腐蚀动力学

• 分类:表观极化曲线和理想极化曲线。 • *理想极化曲线----以单电极反应的平衡电位作为起始 电位的极化曲线。 • *表观极化曲线或实测极化曲线---- 由实验测得的腐蚀 电位与外加电流之间关系曲线。 • • 注意:表观极化曲线的起始电位只能是腐蚀电位而不 是平衡电极电位。
在金属腐蚀与防护研究中,测定金属电极表观极化曲线是 常用的一种研究方法。
第一节 第二节 第三节 第四节
本章主要内容 极化现象 极化 去极化 腐蚀极化图
第一节 极化
• 问题:因为具有很大腐蚀倾向的金属不一定必然对应着高 的腐蚀速度。 如:Al的平衡电极电位很负,从热力学上看它的腐蚀倾向很 大,但在某些介质中铝却比一些腐蚀倾向小的金属更耐蚀 。 • 因此,认识电化学腐蚀动力学规律及其影响,在工程上具 有更现实的意义。
2.2 去极化的方法: • 在溶液中增加去极剂(H+、O2-等)的浓度、升温、搅拌 以及其他降低活化过电压的措施,都将增强阴极去极化作 用; • 在溶液中加入络合物或者沉淀剂,它们会与金属离子形成 难溶的络合物或沉淀物,不仅可以使金属表面附近溶液中 的金属离子浓度降低,并能一定程度地减弱阳极极化作用 。 • 在溶液中升温、搅拌等均会加快金属离子进入溶液的速度 ,从而减弱阳极极化作用。 • 如果在溶液中加入某些活性阴离子,就有可能使已经钝化 的金属重新处于活化状态。
2)确定金属的腐蚀速度 • 利用极化曲线外延法求自腐蚀电流Icorr ,一种电化学技术 确定金属腐蚀速度的方法之一。
3.3 腐蚀速度计算及耐蚀评价
• 1)腐蚀速度计算 • 用腐蚀电池的腐蚀电流表征 • 电化学腐蚀过程严格遵守电当量关系。即一个一价的金属 离子在阳极区进入溶液,必定有一个一价的阴离子在阴极 获得一个电子;一个二价的金属的金属离子在阳极区进入 溶液,也必然有一个二价或两个一价的阴离子或中性分子 在阴极取走两个电子,如此类推。 • 金属溶解的数量与电量的关系遵循法拉第定律,即电极上 溶解(或析出)1mol的物质所需的电量为96500c,因此, 已知腐蚀电流或电流密度就能计算出所溶解(或析出)物 质的数量。
电化学腐蚀原理2

i = iO 2 + i H 2
F:氢去极化开始 氧去极化的一般规律: 氧去极化的一般规律: 氧去极化腐蚀的影响规律: 氧去极化腐蚀的影响规律:
溶解氧,流速,盐的浓度,温度
氧的极化曲线
极限电流 密度是浓 差控制腐 蚀的最大 速度
i = iO 2 + i H 2
氧的极化曲线
各金属的实验曲线图
氧去极化腐蚀的影响因素
金属的钝化 钝化的特性曲线 Eb , ib (EF) EOP-EP ,iP Ebr, E(保)
Fe+H2O—Fe3O4+H++e
Ebr E(保)
三种情况: E< E(保) E(保) <E< Ebr
Fe+H2O—Fe2O3+H++e
Ebr<E Fe— Fe—Fe+ +2e
硫酸亚铁溶解, 硫酸亚铁溶解,沉积交替
1、溶解氧的浓度 、
E = 1.229 − 0.059 pH + 0.0148 PO 2
η=0.059/n(log (1-i/id)) id=nFDC/x
扩散层
如:添加氧化剂等, 致使金属进入钝化。
托马晓夫解释
2、溶液流速 、
层流转为湍流
空泡腐蚀
id=nFDC/x
3、盐浓度的影响 、
4、温度的影响 、
常用 10%FeCl3(+0.05NHCl)溶液 10%FeCl3(+0.05NHCl) 1、电化学方法 尺寸:25~50×2~5mm 25~50 2~5mm 平行试样 : ≥3个 2、化学浸泡方法 边缘面积/表面积 :<0.3 测定孔蚀密度,深度 表面 测定孔蚀密度, 粗糙度: R<8 3、 现场试验 溶液体积/试样面积≥ 20ml/cm2 10%HNO3清除产物。 1 铝合金: 20倍下数孔蚀数。 D = Kt 3 各参数分析
极化与去极化

极化与去极化第四节 极化与去极化以上己节讨论了金属电化学腐蚀的热力学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等人们最为关心的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,认清极化和去极化规律对研究金属的腐蚀与保护有重要的意义。
一、极化作用我们已经知道,电化学腐蚀是由于腐蚀电池的作用而引起的,腐蚀电池产生的腐蚀电流的大小可以用来表示电化学腐蚀的速度。
根据欧姆定律,腐蚀电流c a V V I R-= (2-7) 式中 I ——腐蚀电流强度(A );c V ——阴极电极电位(V );a V ——阳极电极电位(V );R ——腐蚀体系总电阻(包括R R 外内+)(Ω)。
按理将此带入式(2-5)或(2-6)就可算出理论腐蚀速度,然而通过试验测定的腐蚀速度与计算值相差甚远,计算值可以达到实测值的几十倍甚至上百倍。
进一步的研究发现,造成这一差别的结果是腐蚀电池的阴、阳极电位的电流通过时发生了明显的变化,阴极电位变负而阳极电位变正,使得阴、阳极间的电位差(c a V V -)急剧缩小。
如果把无电流通过时的电极电位叫做电极的起始电位,以平衡电位的符号e V 表示,那么腐蚀电池的起始电位差远大于其变化以后的电位差(ec ea c a V V V V ->>-),如图2-10所示,正因如此,计算所得腐蚀速度远大于实测的腐蚀速度。
极化就是指由于电极上通过电流而使电极电位发生变化的现象。
阳极通过电流电位向正的方向变化叫阳极极化。
阴极通过电流电位向负的方向变化叫阴极变化。
无论阳极极化或阴极极化都能使腐蚀原电池的极间电位差减小,导致腐蚀电流减小,阻碍腐蚀过程顺利进行。
极化又称极化作用、极化现象。
二、极化曲线试验证明,极化与电流密度关系密切,电流密度越大,电位变化幅度也越大。
所谓极化曲线就是表示同一电极上电极电位与电流密度之间变化关系的曲线。
利用图2-11的装置,就可以测定腐蚀电池的阴、阳极极化曲线。
第三章 电化学腐蚀动力学

二、腐蚀极化图
★ 极化现象是由于电极反应存在阻力 造成 的,对金属腐蚀有重要影响。
★ 电极电位随电流密度变化而改变, 通常把电极的电位与电流密度的关系绘 图来表示,称为腐蚀极化图。
1、极化曲线的测量
腐蚀电池的阴阳极 电位随电流的变化
腐蚀电池极化曲线测量装置示意图
电流随着电阻的减小而增大, 同时导致阴极和阳极发生极化, 即使阳极电位升高,阴极电位降 低,从而使两极间的电位差减小。
腐蚀金属的理论极化曲线与表观极化曲线
理论极化曲线: 金属腐蚀原电池的阳极、阴极过程极化曲 线。 表观极化曲线: 正在腐蚀的金属施加外电流或电位后会发 生极化,表示外电流与金属的电极电位的关 系的极化曲线。
表观极化曲线的测量方法有两种.恒电流法和恒 电位法,恒电流法是控制电流,测量电位,表示电 极电位是电流的函数E=f(I);恒电位法是控制电位, 测量电流,表示电流是电极电位的函数I=f(E)。目前 腐蚀极化图,多半采用以电位为纵坐标,以电流(或 电流密度)为横坐标。电流有普通直角坐标与对数坐 标两种。
3、 去极化
★消除或减弱引起电极极化的因素,促使电 极反应过程加速进行,习惯上称为去极化作 用。 例如存在浓差极化的情况下,搅拌溶液 可以加快相关物质的扩散,减小浓差极化; 提高温度可提高电极反应速率和物质的扩 散速率,从而降低活化极化和浓差极化; 溶液中的氧化剂如H+、O2等可使阴极极 化减弱,这些氧化剂也叫去极化剂。
(a)阴极控制
b)阳极控制
(c)混合控制
(d)欧姆控制
E
E Eea
Eቤተ መጻሕፍቲ ባይዱ
RPc
Eea
Icorr
(a)阳极初始电位负移
I
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开电极表面:
• • 2)电化学脱附,水分子与金属表面上的吸附氢原子
发生放电反应,并同时生成氢分子离开电极表面:
• • 3)逸出机理,吸附氢原子在电极表面上作为自由原子
• 式中ηH为电流密度等于i1时的析氢电位。 • 过电位是电流密度的函数,因此只有在指出对
应的电流密度的数值时,过电位才具有明确的定 量意义。
• 从图4.1可以看出,电流密度越大,氢过电 位越大。当电流密度大到一定程度时,氢 过电位与电流密度的对数之间成直线关系, 服从Tafel公式
• 在很多情况下,腐蚀产物如氧化物或氢氧化物也 会作为去极化剂而加速腐蚀过程。此时腐蚀产物 中的高价金属离子被还原为低价金属离子,后者 可以被空气中的氧再氧化成高价状态,又可再次 作为去极化剂循环使用。
• 由于金属或溶液性质的不同,电化学腐蚀的阴 极过程的性质也不同。有时甚至不单单是一种阴 极过程在起作用,而是两个或多个阴极过程同时 起作用并共同构成电化学腐蚀的总的阴极过程。 在实际腐蚀中,经常发生的最重要的阴极过程是 氢离子和氧分子作为去极化剂的还原反应,因此 本章专门讨论氢去极化和氧去极化腐蚀。
第四章 去极化腐蚀
•
在电解质中,能够接受电子的物质称为去极
化剂,它有消除或减弱极化的作用。去极化剂物
质种类很多,其中氧和氢是最常见的去极化剂。
以氢离子作为去极化剂的腐蚀过程,称为氢去极
化腐蚀,简称析氢腐蚀,是常见的危害性较大的
一类腐蚀。以氧作为去极化剂的腐蚀过程,称为
氧去极化腐蚀,简称吸氧腐蚀,是自然界普遍存
• 一般认为在酸性溶液中,氢去极化过程是按下列步骤进行 的:
• (1)水化氢离子向电极表面传输。这一步不是电极反应 的控制性步骤。
• (2)水化氢离子在电极表面发生放电反应,生成吸附氢 原子:
• (3) 氢原子的脱附,当反应达到稳态后,金属表面上的吸 附氢原子浓度不再随时间变化,即在不断生成吸附氢原子 的同时,吸附氢原子也以相同速度不断地从阴极表面去除, 并按某种方式生成氢分子。
4.2.2氢去极化的阴极极化曲线与氢 过电位
• 由于缓慢步骤形成的阻力,在氢电极的平 衡电位下将不能发生析氢过程,只有克服 了这一阻力才能进行氢的析出。因此氢的 析出电位要比氢电极的平衡电位更负一些, 两者间差值的绝对值称为氢过电位。
图4.l析氢过程的阴极极化曲线
• 在一定的电流密度下,氢的平衡电位φoH与析氢电 位例φ如H,之对间应的于差电值流就密是度该i电1时流的密氢度过下电氢位的为过电位。 • • (4-1)
在因而破坏性最大的一类腐蚀。本章运用前面几
章讲过的理论和概念着重讨论这两类最重要的腐
蚀过程发生的条件、进行的规律及影响因素,对
它们的特点作了比较,并简要介绍了与氢去极化
和氧去极化有关的腐蚀过程的控制因素的特征。
4.1 电化学腐蚀的阴极过程
• 金属在溶液中发生电化学腐蚀的根本原 因是溶液中含有能使得该种金属氧化的物 质,即腐蚀过程的去极化剂。去极化剂还 原的阴极过程与金属氧化的阳极过程共同 组成整个的腐蚀过程。如果没有阴极过程, 阳极过程就不会发生,金属就不会腐蚀。 阳极过程与阴极过程相互依存,缺一不可。
• 在碱性溶液中.在电极上还原的不是氢离子,而 是水分子,析氢的阴极过程按下列步骤进行:
• (1) 水分子到达电极与氢氧离子离开电极,在碱 性溶液中,虽然放电质点是水分子,但是它的浓 度很高,因此,析氢反应的浓差极化一般较轻微, 这一步也不是电极反应的控制性步骤。
• (2) 水分子在电极表面放电生成吸附在电极表面 的氢原子
4.2 氢去极化腐蚀
• 以氢离子还原反应为阴极过程的腐蚀,称 为氢去极化腐蚀。反应为氢离子的还原为 氢气分子的电极过程,在金属腐蚀学中称 为氢离子去极化过程,简称氢去极化,或 者称为析氢腐蚀。
• 氢离子在电极上还原的总反应
• 的最终产物是氢分子。由于两个氢离子直接在电 极表面的同一位置上同时放电的几率极小,因此 反应的初始产物应该是氢原子而不是氢分子。考 虑到氢原子的高度活泼性,可以认为在电化学步 骤中首先生成吸附在电极表面的氢原子MH,然后 吸附氢原子结合为氢分子脱附并形成气泡析出。
蒸发,然后再结合成氢分子离开电极表面:
• 不论在酸性溶液还是在碱性溶液中,步骤1和步骤 4在一般情况下不会成为控制性步骤,因此析氢反 应可能出现的主要控制性步骤有:电化学步骤、 复合脱附步骤和电化学脱附步骤。在这些步骤中, 如果有一个步骤进行得较缓慢。就会影响到其它 步骤的顺利进行,而使得整个氢去极化过程受到 阻碍,导致电极电位向负方向移动,产生一定的 过电位。对于大多数金属电极来说,步骤2即反应 质点与电子结合的电化学步骤最缓慢,是控制步 骤。但也有少数金属如铂,则步骤3中的复合脱附 步骤进行得最缓慢,是控制步骤。其它步骤对于 氢去极化过程的影响不大。
• (4) 氢分子离开电极表面进入气相。
氢原子的脱附有三种方式:
• 1)复合脱附,此时金属电极起催化剂的作用,吸 附氢原子复合成氢分子并同时解吸离开电极表面:
• 2)电化学脱附,水化氢离子与金属表面上的吸附 氢原子发生放电反应,并同时生成氢分子:
• 3)逸出机理,吸附氢原子在电极表面上作为自由 原子蒸发,然后再结合成氢分子:
阴极过程可以有以下几种类型:
• (1)溶液中的阳离子的还原:
• (2)溶液中的阴离子的还原:
• (3)溶液中的中性分子的还原:
• (4)不溶性产物的还原:
• (5)溶液中的有机化合物的还原: •
• 式中的R代表有机化合物中的基团或有机化 合物的分子。
• 在上述所有的阴极反应中,经常遇到的是氢离子 还原和氧分子还原的阴极反应,特别是氧还原反 应作为阴极过程最为普遍。许多黑色金属和有色 金属以及它们的合金在酸性溶液中的腐蚀,电极 电位很负的碱金属和碱土金属在中性和弱碱性溶 液中的腐蚀,都是以氢离子还原反应作为阴极过 程而进行的。大多数金属和合金在中性电解质溶 液、弱酸性与弱碱性电解质溶液中的腐蚀,以及 在海水、淡水、大气和土壤中的腐蚀,都是以氧 还原反应作为阴极过程而进行的。