氢去极化和氧去极化

合集下载

去极化腐蚀

去极化腐蚀
• (3)氢原子的脱附 • (4) 氢分子离开电极表面进入气附,吸附氢原子复合成氢分子并同时脱附离
开电极表面:
• • 2)电化学脱附,水分子与金属表面上的吸附氢原子
发生放电反应,并同时生成氢分子离开电极表面:
• • 3)逸出机理,吸附氢原子在电极表面上作为自由原子
• 式中ηH为电流密度等于i1时的析氢电位。 • 过电位是电流密度的函数,因此只有在指出对
应的电流密度的数值时,过电位才具有明确的定 量意义。
• 从图4.1可以看出,电流密度越大,氢过电 位越大。当电流密度大到一定程度时,氢 过电位与电流密度的对数之间成直线关系, 服从Tafel公式
• 在很多情况下,腐蚀产物如氧化物或氢氧化物也 会作为去极化剂而加速腐蚀过程。此时腐蚀产物 中的高价金属离子被还原为低价金属离子,后者 可以被空气中的氧再氧化成高价状态,又可再次 作为去极化剂循环使用。
• 由于金属或溶液性质的不同,电化学腐蚀的阴 极过程的性质也不同。有时甚至不单单是一种阴 极过程在起作用,而是两个或多个阴极过程同时 起作用并共同构成电化学腐蚀的总的阴极过程。 在实际腐蚀中,经常发生的最重要的阴极过程是 氢离子和氧分子作为去极化剂的还原反应,因此 本章专门讨论氢去极化和氧去极化腐蚀。
第四章 去极化腐蚀

在电解质中,能够接受电子的物质称为去极
化剂,它有消除或减弱极化的作用。去极化剂物
质种类很多,其中氧和氢是最常见的去极化剂。
以氢离子作为去极化剂的腐蚀过程,称为氢去极
化腐蚀,简称析氢腐蚀,是常见的危害性较大的
一类腐蚀。以氧作为去极化剂的腐蚀过程,称为
氧去极化腐蚀,简称吸氧腐蚀,是自然界普遍存
• 一般认为在酸性溶液中,氢去极化过程是按下列步骤进行 的:

金属腐蚀思考题

金属腐蚀思考题

一.1.腐蚀的类型有哪些?2.已知A=55.84克,设S=10cm2,阳极过程的电流强度Ia=10-3安培,求其重量指标和深度指标(该金属的密度为7.8克/厘米3)?二.1.双电层的类型有哪些?(1)金属离子和极性水分子之间的水化力大于金属离子与电子之间的结合力(2)金属离子和极性水分子之间的水化力小于金属离子与电子之间的结合力(3)吸附双电层平衡电极电位、电极电位的氢标度的定义?氢标度:以标准氢电极作为参考电极而测出的相对电极电位值称为电极电位的氢标度。

金属浸入含有同种金属离子的溶液中,参与物质迁移的使同一种金属离子,当反应达到动态平衡,即反应正逆过程的电荷和物质达到了平衡,这时电位为平衡电极电位。

2.判断金属腐蚀倾向的方法有哪几种?(1)腐蚀反应自由能的变化与腐蚀倾向:当△G<0,则腐蚀反应能自发进行|G|愈大,则腐蚀倾向愈大。

当△G= 0,腐蚀反应达到平衡。

当△G> 0,腐蚀反应不能自发进行。

3以Fe--H2O体系为例,试述电位—pH图的应用?首先列出有关物质的各种存在状态及其标准化学位值列出各类物质的相互反应,算出平衡关系式。

以Fe-H2O体系为例(1)化学反应(反应式中无电子参加)例: 2Fe3++3H2O=Fe2O3+6H+由∆G=∆Go+6RTlnaH+-2RTlnaFe3+= ∆Go-2.3X6RTpH- 2.3x2RTlgGFe3+=0得lgaFe3+= ∆Go/(+6RT)-3pH=-0.723-3pH 对取定的aFe3+,是一条垂直线(2)无H+参与的电极反应例: Fe=Fe2++2eEe=Eo+RT/2FlnaFe2+=Eo+2.3RT/2FlgaFe2+=-0.44+0.0296lgaFe2+对取定的aFe2+,是一条水平线(3)有H+参与的电极反应例: 2Fe2++3H2O=Fe2O3+6H++2eEe=Eo+3RT/FlnaH+-R5/FlnaFe2+=Eo(2.3X3RT)/FlgaH+-2.3RT/FlgaFe2+=0.728-0.1773pH-0.0591lgaFe2+对取定的aFe2+,是一条斜线,斜率为-0.1773最后作出各类反应的电位—pH图,汇总成综合的电位—pH图4腐蚀原电池的组成及工作历程?它有哪些类型?组成:阳极、阴极、电解质溶液、电路四个部分工作历程:(1)阳极过程(2)阴极过程(3)电流的流动三.1.极化作用、阳极极化、阴极极化的定义是什么?极化的本质是什么?极化的类型有哪几种?极化作用:由于通过电流而引起原电池两极间电位差减小,并因而引起电池工作电流强度降低的现象。

析氢腐蚀和吸氧腐蚀

析氢腐蚀和吸氧腐蚀

由于缓慢步骤形成 的阻力,在氢的平 衡电位下将不能发 生析氢腐蚀。因此 氢的析出电位要比 氢电极的平衡电位 更负一些,两者间 差值的绝对值称为 氢过电位。
在一定电流密度下,氢的平 衡电位与析氢电位之差,就 是该电流密度下氢的过电位。
过电位是电流密度的函数。
析氢过程的阴极极化曲线
(氢离子作为唯一的去极 化剂情况下)
a值与材料有关。
根据缓慢放电理论求得的b H值为0.118V(25℃), 这与大多数金属电极上实测的b H值大致相同, 见表5-l。
在酸性溶液中,25℃时,氢在铂、钯电极上析 出的实测数据 b H为0.03V,说明氢析出的控制 步骤不是式(5-6)所示。目前可以认为,极化不 大时,在光滑的铂、钯金属上,氢析出的控制 步骤如式(5-7)所示;极化较大或电极表面被极 化时,控制步骤可能如式(5-8)所示。
第一节 电化学腐蚀中的阴极过程
金属在电解质溶液中发生电化学腐蚀的根本 原因是:
电解质溶液中含有能使该种金属氧化的物质, 即腐蚀过程的去极化剂。
去极化剂的阴极过程与金属氧化的阳极过程 共轭组成腐蚀过程。显然,没有阴极过程,阳 极过程就不会发生,金属也就不会发生电化学 腐蚀。
由阴极极化的本质可知,凡能在阴极上吸收电子的 过程(即阴极还原反应)都可以构成金属电化学腐蚀的 阴极过程。
( 4 )氢分子聚集成氢气泡析出。
在这些步骤中,如果某一步骤进行得缓慢,就会控 制影响着其他步骤的顺利进行,由阳极流过来的电子就 会在阴极上积累,导致阴极电位向负向移动,从而产生 一定的阴极过电位。
在碱性介质中,如果发生析氢反应,电极上还原的 不是氢离子,而是水分子,是电子直接加在水分子上, 然后分解产生氢气和OH-
当前的电化学工业主要是水溶液的电化学,水的电 解过程可能叠加到任何阴极或阳极反应上,所以析氢过 电位的研究也有很大的实用价值。

第 4 章 析氢腐蚀与吸氧

第 4 章 析氢腐蚀与吸氧

4.2 吸氧腐蚀
二. 氧的阴极还原过程及过电势
氧从空气中进入溶液并迁移到阴极表面发生还原反应,包括 个过程 氧从空气中进入溶液并迁移到阴极表面发生还原反应,包括4个过程 阴极极化曲线的三个区域: 阴极极化曲线的三个区域: 1. 当阴极电流密度较小,且供氧充分时,阴极极化过程的速度决定氧的离子化反应 当阴极电流密度较小,且供氧充分时, 2. 阴极电流密度增大,出现了浓差极化 阴极电流密度增大, 3. 当阴极反应速度=极限扩散电流密度时,出现新的阴极极化 当阴极反应速度=极限扩散电流密度时,
3. 当V输=V反时,吸氧腐蚀同时受电化学极化和扩散浓差极化控制。 反时,吸氧腐蚀同时受电化学极 吸氧腐蚀的过程及特点 1. 如腐蚀金属在溶液中的电势较高,腐蚀过程中氧的传递速度大,金 如腐蚀金属在溶液中的电势较高,腐蚀过程中氧的传递速度大, 属腐蚀速度主要由氧在电极上的放电速度决定; 属腐蚀速度主要由氧在电极上的放电速度决定;阳极极化曲线与阴 极极化曲线相交于氧还原反应的活化区。 极极化曲线相交于氧还原反应的活化区。 2. 如腐蚀金属在溶液中的电势很低,腐蚀过程中氧的传递速度太小, 如腐蚀金属在溶液中的电势很低,腐蚀过程中氧的传递速度太小, 阴极过程将由氧去极化和氢离子去极化两个反应共同组成; 阴极过程将由氧去极化和氢离子去极化两个反应共同组成;此时腐 蚀电流大于氧的极限扩散电流 3. 如腐蚀金属在溶液中的电势较低,且处于活性溶解状态,而氧的传 如腐蚀金属在溶液中的电势较低,且处于活性溶解状态, 输速度又有限,则金属腐蚀速度将由氧的极限扩散电流密度决定。 输速度又有限,则金属腐蚀速度将由氧的极限扩散电流密度决定。 阳极极化曲线与阴极极化曲线相交于氧的扩散控制区。 阳极极化曲线与阴极极化曲线相交于氧的扩散控制区。
1. 当V输》V反时,阴极去极化反应是控制因素,即有充足的氧化剂到达阴极。 阴极去极化反应是控制因素,即有充足的氧化剂到达阴极。 2. 当V输《V反时,氧向阴极表面的输送是控制步骤。 氧向阴极表面的输送是控制步骤。 空气中的氧输送到被腐蚀件的阴极表面上,要经历一个复杂的过程。 空气中的氧输送到被腐蚀件的阴极表面上,要经历一个复杂的过程。

腐蚀简版解析

腐蚀简版解析

判断金属腐蚀倾向的方法有哪几种?(1)腐蚀反应自由能的变化与腐蚀倾向:当△G <0,则腐蚀反应能自发进行|△G |愈大,则腐蚀倾向愈大。

当△G= 0,腐蚀反应达到平衡。

当△G> 0,腐蚀反应不能自发进行。

(2)标准电极电位与腐蚀倾向:标准电极电位越负,金属越容易腐蚀2.发生阳极极化与阴极极化的原因是什么?阳极极化原因:(1)阳极的电化学极化:如果金属离子离开晶格进入溶液的速度比电子离开阳极表面的速度慢,则在阳极表面上就会积累较多的正电荷而使阳极电位向正的方向移动(2)阳极的浓度极化:阳极反应产生的金属离子进入分布在阳极表面附近的溶液中,如果这些金属离子向深处扩散的速度比金属离子从晶格进入阳极表面附近溶液的速度慢,就会使阳极电位向正的方向移动(3)阳极的电阻极化:很多金属在特定的溶液中能在表面生成保护膜使金属进入钝态,这种保护膜能阻碍金属离子从晶格进入溶液的过程,而使阳极电位剧烈地向正方向移动。

阴极极化的原因: (1)阴极的电化学极化:氧化态物质与电子结合的速度比外电路输入电子的速度慢,使得电子在阴极上积累,由于这种原因引起的电位向负的方向移动。

(2) 阴极的浓度极化:氧化态物质到达阴极表面的速度落后于氧化态物质在阴极表面还原反应的速度;或者还原产物离开电极表面的速度缓慢,将导致电子在阴极上的积累。

.氢去极化腐蚀与氧去极化腐蚀的异同点、极化曲线?电偶腐蚀:定义:异种金属在同一介质中接触,由于腐蚀电位不相等有电偶电流的流动,使电位较低的金属溶解速度增加,造成接触处的局部腐蚀,而电位较高的金属,溶解速度反而减小,这就是电偶腐蚀,又称接触腐蚀原理:腐蚀电位较低的金属由于和腐蚀电位较高的金属接触而产生阳极极化,其结果是溶解速度增加,而电位较高的金属,由于和电位较低的金属接触而产生阴极极化,结果是溶解速度下降,即受到阴极保护影响因素:(1)面积比:大阴极小阳极的电偶组合是很有害的,应当避免。

(2)介质的电导率:介质的电导率越高,两极间的溶液电阻小,阳极受到的腐蚀全面,不严重。

氢去极化腐蚀与氧去极化

氢去极化腐蚀与氧去极化

• 可知,当阴极电流为零时,氢平衡电位为 e,H ;
• 在氢电极旳平衡电位下将不能发生析氢反应。
• 随阴极电流旳增长,阴极极化程度增长,阴极电 位向负移动旳趋势增大;
• 当阴极电位负到 k 时才发生析氢反应,k为析氢
电位。析氢电位与氢平衡电位之差为析氢过电位,
用ηH表达。

H e,H k
• ηH是电流密度旳函数,只有相应旳电流密度旳数 值时,过电位才具有明确旳定量意义。
铝和不锈钢在稀硫酸中属于阳极控制旳腐蚀过程
氢去极化腐蚀旳特征
1.阴极反应浓度极化较小,一般能够忽视,其原因 A 去极化剂是带电旳,半径很小旳氢离子,在溶液中有较大旳迁移能力和扩 散能力 B 去极化旳浓度较大,在酸溶液中去极化剂是氢离子,在中性或碱性溶液中 水分子 可按下式进行反应 H2O+ e=H吸附+OHC 氢气泡旳搅拌作用
• • 上式表c 白 Rn,FT 阴 2极.3l过g1程 与iiD 电极材料无关,而完全取
决于氧旳极限扩散电流密度。
3)阴极过程由氧旳离子化反应与氧旳扩散过程混 合控制,即V输=V反。
• 当 ic 为1/2 iD<i<iD时,阴极过程与氧旳离子化反 应及氧旳扩散过程都有关,即由活化极化与浓 差极化混合控制。
第三章 氢去极化腐蚀与氧去极 化腐蚀
氢去极化是常见旳危害性较大旳一类腐 蚀
氧去极化腐蚀是自然界普遍存在,因而 破坏性最大旳一类腐蚀
3.1 电化学腐蚀旳阴极过程
去极化
• 能消除或克制原电池阳极或阴极极化过程旳均叫 作去极化。
• 能起到这种作用旳物质叫作去极剂,去极剂也是 活化剂。
• 对腐蚀电池阳极极化起去极化作用旳叫阳极去极 化;
金属在酸中腐蚀旳阳极过程

电化学腐蚀原理2

电化学腐蚀原理2

i = iO 2 + i H 2
F:氢去极化开始 氧去极化的一般规律: 氧去极化的一般规律: 氧去极化腐蚀的影响规律: 氧去极化腐蚀的影响规律:
溶解氧,流速,盐的浓度,温度
氧的极化曲线
极限电流 密度是浓 差控制腐 蚀的最大 速度
i = iO 2 + i H 2
氧的极化曲线
各金属的实验曲线图
氧去极化腐蚀的影响因素
金属的钝化 钝化的特性曲线 Eb , ib (EF) EOP-EP ,iP Ebr, E(保)
Fe+H2O—Fe3O4+H++e
Ebr E(保)
三种情况: E< E(保) E(保) <E< Ebr
Fe+H2O—Fe2O3+H++e
Ebr<E Fe— Fe—Fe+ +2e
硫酸亚铁溶解, 硫酸亚铁溶解,沉积交替
1、溶解氧的浓度 、
E = 1.229 − 0.059 pH + 0.0148 PO 2
η=0.059/n(log (1-i/id)) id=nFDC/x
扩散层
如:添加氧化剂等, 致使金属进入钝化。
托马晓夫解释
2、溶液流速 、
层流转为湍流
空泡腐蚀
id=nFDC/x
3、盐浓度的影响 、
4、温度的影响 、
常用 10%FeCl3(+0.05NHCl)溶液 10%FeCl3(+0.05NHCl) 1、电化学方法 尺寸:25~50×2~5mm 25~50 2~5mm 平行试样 : ≥3个 2、化学浸泡方法 边缘面积/表面积 :<0.3 测定孔蚀密度,深度 表面 测定孔蚀密度, 粗糙度: R<8 3、 现场试验 溶液体积/试样面积≥ 20ml/cm2 10%HNO3清除产物。 1 铝合金: 20倍下数孔蚀数。 D = Kt 3 各参数分析

金属腐蚀与防护课后习题答案 (1)

金属腐蚀与防护课后习题答案 (1)

腐蚀与防护试题1化学腐蚀的概念、及特点答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。

是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。

在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。

归纳化学腐蚀的特点在不电离、不导电的介质环境下反应中没有电流产生,直接完成氧化还原反应腐蚀速度与程度与外界电位变化无关2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么?答案:氧化膜保护作用条件:①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。

PB原理的数学表示:反应的金属体积:V M = m/? m-摩尔质量氧化物的体积: V MO = m'/ ? '用? = V MO/ V M = m' ? /( m ? ' )当? > 1 金属氧化膜具备完整性条件部分金属的?值氧化物?氧化物?氧化物?MoO3 WO3 V2O5Nb2O5 Sb2O5 Bi2O5Cr2O3 TiO2 MnOFeO Cu2O ZnOAg2O NiO PbO2SnO2 Al2O3 CdOMgO CaOMoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。

Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。

这些金属的氧化膜致密、稳定,有较好的保护作用。

MgO CaO ?值较小,氧化膜不致密,不起保护作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 氢去极化腐蚀
发生析氢腐蚀的体系能量条件:
e,k e,a 0
(1) 标准电位很负的活泼金属,如钠、镁等 (2) 大多数工程上使用的金属,如Fe (3) 正电性金属一般不会发生析氢腐蚀。但是当溶
液中含有络合剂(如NH3、CN- ),使金属离子 (如Cu2+、Ag+)的活度保持很低时,正电性金 属(如Cu、Ag)也可能发生析氢腐蚀。
2x10-5
()
• 氢离子还原反应的历程
氢原子在金属中的扩散
吸附在金属表面的氢原子能够渗入金属 并在金属内扩散,就有可能造成氢鼓泡,氢脆 等损害,金属表面吸附氢原子浓度愈大,则渗 入金属的氢原子愈多,氢损害的危害性愈大。 因此,凡是在金属表面发生析氢反应的场合, 如金属在酸性溶液中发生析氢腐蚀,金属的酸 洗除锈,电镀,阴极保护,都应当注意是否会 造成氢损伤问题。
对于析氢腐蚀来说,根据它的特点可知:
➢ 析氢腐蚀可以按照均相腐蚀电极处理,因此欧 姆电阻可以忽略,只需要比较阴极反应和阳极 反应的阻力。
➢ 析氢腐蚀属于活化极化腐蚀体系,阴极反应和 阳极反应都受活化极化控制。对于活化极化控 制的电极反应,电极反应的阻力主要表现在交 换电流密度的大小。因此,比较电极反应的阻 力,只需比较交换电流密度就行了。
b值
b称为Tafel斜率,与金属材料和溶液关系很小, 故各种金属表面上析氢反应的b值相差不大。
b 2.3 2.3RT nF
对单电子反应n = 1,取传递系数 = 0.5,在 25C,算出b=118mV ( = 51.24mV),这是一个 典型的数值。
各种金属上析氢反应的常数a(i=1安培/厘米2), b及交换电流密度io(根据Pymkuh)
(3)混合控制
阳极极化和阴极极化程度差不多,称为混合 控制,比如Fe在非氧化性酸中的腐蚀。这种类型 的析氢腐蚀体系的特点是:腐蚀电位离阳极反应 和阴极反应平衡电位都足够远,即Eea << Ecor << Eek。因此活化极化腐蚀体系的Ecor和icor公式完全 适用。对于混合控制的腐蚀体系,减小阴极极化 或减小阳极极化都会使腐蚀电流密度增大。
大) 低氢过电位金属(如Pt、Pd,| a |的数值很小)。
a与电极材料、表面状态、溶液组成、浓度及 温度有关。氢过电位数值对氢去极化腐蚀的速度 很有影响。
一般地说,在酸性溶液中,氢过电位随pH增加 而增中,pH每增加1单位,氢过电位增加59mV; 碱性溶液中,氢过电位随pH增加而减小,pH每增 加1单位,氢过电位减小59mV。
(2) 阳极极化控制
当ia0 << ik0,才会出现阳极极化控制。因为 除Pt、Pd等低氢过电位金属外,在常见的工程金 属材料表面上析氢反应的交换电流密度都不很大, 故这种类型的析氢腐蚀不可能发生在活化极化控 制的腐蚀体系,只有当金属在酸溶液中能部分钝 化,造成阳极反应阻力大大增加,才能形成这种 控制类型。比如铝和不锈钢在稀硫酸中发生析氢 腐蚀就是这种情况。显然,这种类型的析氢腐蚀 的阳极反应不再受活化极化控制。
析 氢 200 0.97%

Cu 1.23%Fe 1.07%Sb
毫 升
160
1.03%Sw
()
120
1.1% As
1%cd 80
纯锌
40
0
2
4
1%Pb 1%Hg
6
8 时间(小时)
(根据Vondracek,Izak-krizko)
不同杂质对锌在0.5N硫酸中腐蚀速度的影响
氢过电位高的杂质将使基体金属的腐蚀速度减 小,而氢过电位低的杂质将使基体金属的腐蚀 速度变大。
0.110 0.113 0.12 0.118 0.115 0.116 0.125 0.110 0.130 0.13
6.6x10-15 3.0x10-13 2.2x10-12 3.1x10-11 1.1x10-7 6x10-9 2.5x10-6 1.5x10-6 8x10-5 0.17
腐 蚀 动力学

析氢腐蚀的三种控制类型
(1)阴极极化控制 如Zn在稀酸溶液中的腐蚀。因为Zn是高氢过
电位金属,析氢反应交换电流密度ik0很小,而Zn 的阳极溶解反应的交换电流密度ia0较大,即ia0>> ik0,故为阴极极化控制。其特点是腐蚀电位与阳 极反应平衡电位靠近。对这种类型的腐蚀体系, 在阴极区析氢反应交换电流密度的大小将对腐蚀 速度产生很大影响。
金属


a伏
b 伏 i o(安培/厘米2)
Pb Hg Cd Zn Cu Ag Fe Ni Pd 光亮Pt
1N H2SO4 1N H2SO4 1.3N H2SO4 1N H2SO4 2N H2SO4 1N HCl
1N HCl 0.11N NaOH 1.1N KOH
1N HCl
-1.56 -1.415 -1.4 -1.24 -0.80 -0.95 -0.70 -0.64 -0.53 -0.10

电极材料
电极反应
溶液
io(安培/厘米)



Hg
H++e=1/2H2
1.0NH2SO4
5x10-13

Pt
H++e=1/2H2
0.2NH2SO4
10-3
的 交 换
Ag
Ag++e=Ag
100g/lAgNo3 1.1x10-2
Cd
1/2Cd2++e=1/2Cd 160g/lCdSO4 1.4x10-2
析氢腐蚀的阴极过程
氢还原反应的动力学特征: 当过电位k很小时,k = Rf ik 当过电位k比较大时,k = a + b lgik
a值 a是ik = 1单位时的过电位k值。文献中常称为
氢过电位。金属电极材料的种类对析氢反应的a 值有重大影响。按| a |的大小可划分: 高氢过电位金属(如Hg、Pb、Zn、Cd,a 很大) 中氢过电位金属(如Cu、Fe、Ni,| a |的数值不

Ni
1/2Ni2++e=1/2Ni 2.0NNiSO4
2x10-9
流 密 度
Fe
1/2Fe2++e=1/2Fe 2.0NFeSO4
10-8
Co
1/2Co2++e=1/2Co 2.0NCocl2
8x10-7

Cu
1/2Cu2++e=1/2Cu 2.0NCuSO4
2x10-5

Zn
1/2Zn2++e=1/2Zu 2.0NZuSO4
析氢腐蚀的典型例子—Fe在酸中的腐蚀
(1) 在pH<3的酸溶液中,阴极反应受活化极化 控制。
(2) 在弱氧化性和非氧化性酸溶液中,在反应速 度不是很大时,阳极反应亦受活化极化控制。
(3) 在大多数情况下,Fe在酸溶液中的腐蚀形态 是均匀腐蚀。
所以,Fe在酸溶液中的腐蚀可以当作均相腐蚀电 极处理,作为活化极化控制腐蚀体系的典型例子。
相关文档
最新文档