青岛版七年级数学第一单元测试题
青岛版初中数学七年级上册单元测试-第一章

第1章 基本的几何图形检测题一、精心选一选(每小题3分,共30分)1.六棱柱由几个面围成( )A.6个B.7个C.8个D.9个2.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是( )3.下列说法错误的是( )A.若AP=BP,则点P 是线段的中点B.若点C 在线段AB 上,则AB=AC+BCC.若AC+BC>AB,则点C 一定在线段AB 外D.两点之间,线段最短4.一个五棱锥的面数、棱数和顶点数分别是( )A.6,10,5B.6,10,6C.5,10,6D.5,6,55.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是( )6.在八面体顶点数V 、面数F 、棱数E 中,V+F-E=( )A.16B.6C.4D.27.如图,直线AB 、CD 相交于点O ,在这两条直线上,与点O 的距离为3cm 的点有( ) A. 2个 B.3个C.4个D.5个8.如图所示,图中共有几条线段( )A. 4B. 5C. 10D.159.已知AB=21cm ,BC=9cm ,A 、B 、C 三点在同一条直线上,那么AC 等于( )A.30cmB. 15cmC. 30cm 或15cmD. 30cm 或12cm10、任意画三条直线,则交点可能是( )B A DC A B CD DC B AA.1个B.1个或3个C.1个或2个或3个D.0个或1个或2个或3个二、细心填一填(每小题3分,共24分)11.填名称:如图,图(1)是 ,图(2) ,图(3) 。
12.图甲能围成 ;图乙能围成 ;图丙能围成 。
13.写出你所熟悉的、由三个面围成的几何体的名称是14.直角三角形绕一条直角边旋转一周得到的几何体是15.已知点B 在线段AC 上,AB=6cm,BC=10cm,P 、Q 分别是AB 、BC 中点,则线段PQ= cm16.在直线上顺次取A 、B 、C 三点,使得AB=9cm,BC=4cm,若点O 是线段AC 的中点,则线段OB 的长是17.如图,观察图形后,小明得出下列结论:①直线AB 与直线BA 是同一条直线;②射线AC 与射线AD 是同一条射线;③AC+BC>AB;④三条直线两两相交时,一定有三个交点。
第1章 基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)

第1章基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,图1和图2中所有的正方形都相同,将图1的正方形放在图2中①②③④某一位置,所组成的图形不能围成正方体的位置是A.①B.②C.③D.④2、小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示-3的点重合,若数轴上A,B两点之间的距离为8(A在B的左侧),且A,B两点经上述折叠后重合,则A 点表示的数为()A.-4B.-5C.-3D.-23、下列几何体都是由平面围成的是()A.圆柱B.圆锥C.四棱柱D.球4、数轴上到点-2的距离为4的点有( ).A.2B.-6或2C.0D.-65、如图,有一个正方体纸巾盒,它的平面展开图不可能的是()A. B. C. D.6、如图是一个正方体展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,-2,0B.0,-2,1C.-2,0,1D.-2,1,07、下列选项的图形中,是三棱柱的侧面展开图的为()A. B. C. D.8、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是A.丽B.深C.圳D.湾9、有一种正方体如图所示,下列图形是该方体的展开图的是()A. B. C. D.10、下列四个说法:①两点之间,直线最短;②直线外一点与直线上各点连接的所有线段中,垂线段最短;③连接两点的线段,叫做两点的距离;④从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.其中正确的是()A.①②B.①③C.②③D.②④11、下列几何体中,俯视图是矩形的是()A. B. C. D.12、如图,已知A,B,C,D,E五点在同一直线上,D点是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于()A.10B.8C.6D.413、一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形14、如图,某同学沿直线将三角形的一个角(阴影部分)剪掉后,发现剩下部分的周长比原三角形的周长小,能较好地解释这一现象的数学知识是()A.两点确定一条直线B.线段是直线的一部分C.经过一点有无数条直线D.两点之间,线段最短15、几何体的展开图形中:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;其中属于立体图形的是()A.①②③B.③④⑤C.③⑤D.④⑤二、填空题(共10题,共计30分)16、如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.17、棱长分别为4cm,3cm两个正方体如图放置,点P在E1F1上,且E1P= E1F1,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是________.18、在平面直角坐标系中,点P是直线上的动点,过点P作直线l垂直于x 轴,直线l与直线相交于点Q,设点P的横坐标为m,当PQ >6时,m的取值范围是________.19、如图,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=,P是线段AD上一动点,一机器人从点A出发沿AD以个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为________.20、用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是________.21、如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是________.22、要在墙上钉稳一根横木条,至少要钉________个钉子,这样做的道理是________.23、已知数轴上两点到原点的距离是和2,则________.24、从A地到B地架设电线,总是尽可能沿着线段AB来架设,原因是________.25、已知点A、B、C在同一条直线上,且线段AB=5,BC=4,则A、C两点间的距离是________.三、解答题(共5题,共计25分)26、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.27、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.28、一次课外活动中,小东用小刀将一个泥塑正方体一刀切下去,请你猜猜看他切下的多面体可能是哪些柱体或锥体?29、已知长方形纸片的长为31.4厘米,宽为5厘米,用它围成一个高为5厘米的圆柱体,求圆柱的一个底面的面积.(π取3.14)30、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、B5、B6、A7、D8、D9、C10、D11、B13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
(青岛版)七年级数学上册第一章测试题

(青岛版)七年级数学上册第一章测试题(共30题,共100分)一、选择题(共15题,共30分)1.(2分)用一个平面去截一个圆柱体,不可能的截面是 A.B.C.D.2.(2分)下面平面图形经过折叠不能围成正方体的是 A.B.C.D.3.(2分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是 A.伦B.奥C.运D.会4.(2分)用平面去截一几何体,不可能出现三角形截面的是 A.长方体B.棱柱C.圆柱D.圆锥5.(2分)下列图中是正方体的展开图的有 A.1个B.2个C.3个D.4个6.(2分)图(1)是一个正方体的展开图,该正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,此时这个正方体朝上一面的字(不考虑文字的方向)是 A.梦B.中C.国D.我7.(2分)如图,一个几何体由5个大小相同,棱长为1的小正方体搭成,下列说法正确的是 A.从正面看到的形状图的面积为7B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D.这个几何体的表面积是138.(2分)某正方体的平面展开图如图所示.由此可知,正方体中“爱”字所在面的对面的汉字是 A.习B.会C.思D.考9.(2分)如图是由6个小正方体搭成的几何体,从该几何体上面看到的形状图是 A.B.C.D.10.(2分)下面几何体中,截面图形不可能是圆 A.圆柱B.圆锥C.球D.正方体11.(2分)下面平面图形经过折叠不能围成正方体的是 A .B .C .D .12.(2分)如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形,,内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形,,内的三个数依次为 A .1,−2,0B .0,−2,1C .−2,0,1D .−2,1,013.(2分)用一个平面去截一个几何体,得到的截面是五边形,这个几何体可能是 A .圆锥B .圆柱C .球体D .长方体14.(2分)下列平面图形经过折叠不能围成正方体的是 A .B .C .D .15.(2分)下面几何体中,截面图形不可能是圆的是 A .圆柱B .圆锥C .球D .正方体二、填空题(共10题,共20分)16.(2分)如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是.17.(2分)用一个平面去截三棱柱不可能截出以下图形中的(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形18.(2分)一个直棱柱有八个面,所有侧棱长的和为24 cm ,则每条侧棱的长是cm .19.(2分)如果一个棱柱的底面是六边形,且侧棱长为5 cm,那么它所有的侧棱长之和是.20.(2分)用一个平面去截一个正方体,所得截面的边数最少是,最多是.21.(2分)如图,从一个棱长为4 cm的正方体的一个顶点挖去一个棱长为1 cm的正方体后,从任何角度所能看到的所有面的面积为.22.(2分)一个几何体,是由许多规格相同的小正方体堆积而成的,从正面看和从左面看的形状如图所示,要搭成这样的几何体,最少需用块小正方体.23.(2分)圆柱的侧面展开图是.24.(2分)将三棱柱沿它的棱剪成平面图形,至少要剪开条棱.25.(2分)一个几何体是由一些大小相同的小正方块摆成的.其从上面和正面看到的形状图如图所示,则组成这个几何体的小正方块最多有个.三、解答题(共5题,共50分)26.(10分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.27.(10分)下图是用小正方体搭成的几何体.请分别画出从左面、上面看到的几何体的形状图.28.(10分)从正面,左面,上面观察如图所示的几何体,分别画出所看到的几何体的形状图.29.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.30.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.答案一、选择题(共15题,共30分)1.【答案】D【解析】用一个平面去截一个圆柱体,轴截面是矩形;过平行于上下底面的面去截可得到圆;过侧面且不平行于上下底面的面去截可得到椭圆;不可能的截面是等腰梯形.故选D.【知识点】面截体2.【答案】B【解析】由分析可知不能折叠成正方体的是:B.故选:B.【知识点】正方体的展开图3.【答案】C【解析】这是一个正方体的平面展开图,共有六个面,其中面“伦”与“奥”相对,面“会”与“敦”相对,“看”与面“运”相对.【知识点】正方体相对两个面上的文字4.【答案】C【知识点】面截体5.【答案】D【解析】这四个图形全部都是正方体的展开图.【知识点】正方体的展开图6.【答案】D【解析】由图(1)可得,“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图(2)可得,小正方体从图(2)的位置依次翻到第5格时,“国”在下面,则这时小正方体朝上面的字是“我”.故选D.【知识点】正方体相对两个面上的文字7.【答案】B【知识点】从不同方向看物体8.【答案】C【解析】由展开图可知,学与会相对,习与考相对,爱与思相对,故选C.【知识点】正方体相对两个面上的文字9.【答案】B【解析】从上往下看,该几何体的俯视图如下:【知识点】从不同方向看物体10.【答案】D【解析】本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆.【知识点】面截体11.【答案】B【知识点】正方体的展开图12.【答案】A【解析】由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中,,内的三个数依次为1,−2,0.故选:A.【知识点】正方体相对两个面上的文字13.【答案】D【解析】A、用一个平面去截一个圆锥,得到的图形可能是圆形,椭圆,抛物线,双曲线的一支,三角形,故A选项错误;B、用一个平面去截一个圆柱,得到的图形只能是圆,椭圆,长方形,故B选项错误;C、用一个平面去截一个球体,得到的图形可能是圆,故C选项错误;D、用一个平面去截一个长方体,得到的图形可能是五边形,长方形,三角形,故D选项正确.故选:D.【知识点】面截体14.【答案】C【知识点】正方体的展开图15.【答案】D【知识点】面截体二、填空题(共10题,共20分)16.【答案】和【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,与“社”在相对面上的字是和.【知识点】正方体相对两个面上的文字17.【答案】③【解析】当截面与底面平行时,得到的截面形状是三角形故①②正确;当截面与底面垂直且经过三棱柱的四个面时,得到的截面形状是正方形,故④正确;当截面与底面斜交且经过三棱柱的四个面时,得到的截面形状是等腰梯形,故⑥正确;当截面与三棱柱的五个面相交时,得到的截面形状是五边形形,故⑤正确.【知识点】面截体18.【答案】4【解析】∵这个棱柱有八个面,∴这个棱柱是6棱柱,有6条侧棱,∵所有侧棱的和为24 cm,∴每条侧棱长为24÷6=4cm.【知识点】认识立体图形19.【答案】30 cm【解析】∵棱柱的底面是六边形∴棱柱有6条侧棱,∵侧棱长为5 cm,∴它所有的侧柱长之和是6×5=30cm,故答案为:30 cm.【知识点】认识立体图形20.【答案】3;6【解析】∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴所得截面的边数最少是3,最多是6.故答案为:3;6.【知识点】面截体21.【答案】96 cm2【解析】挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,即从任何角度所能看到的所有面的面积为16×6=96 cm2.【知识点】从不同方向看物体22.【答案】6【解析】根据三视图可得:第二层有2个小正方块,根据主视图和左视图可得第一层最少有4个正方体,故最少需用2+4=6块正方体.【知识点】从不同方向看物体23.【答案】矩形【知识点】圆柱的展开图24.【答案】5【解析】由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9−4=5(条),故至少需要剪开的棱的条数是5条.【知识点】直棱柱的展开图25.【答案】6【解析】利用俯视图标数法,标出小正方块最多的情况如下:21212+2+1+1=6.【知识点】从不同方向看物体三、解答题(共5题,共50分)26.【答案】如图所示.【知识点】从不同方向看物体27.【答案】该几何体从左面看和从上面看所得图形如图所示:【知识点】从不同方向看物体28.【答案】【知识点】从不同方向看物体29.【答案】如图所示:【知识点】从不同方向看物体30.【答案】【知识点】从不同方向看物体。
初中数学青岛版七年级上册第1章 基本的几何图形1.4线段的比较与作法-章节测试习题(1)

章节测试题1.【答题】已知点O是线段AB上的一点,且AB=12cm,点M、N分别是线段AO、线段BO的中点,那么线段MN的长度是( )A. 6cmB. 5cmC. 4cmD. 无法确定【答案】A【分析】根据线段中点的性质,可得OM,ON,根据线段的和差,可得答案.【解答】∵点O是线段AB上一点,∴AO+BO=AB=12∵点M、N分别是线段AO、线段BO的中点,∴MO=AO,NO=BO.∴MN=MO+NO=(AO+BO)=6(cm).选A.2.【答题】下列关系中,与图示不符合的式子是( )A. AD-CD=AB+BCB. AC-BC=AD-DBC. AC-BC=AC+BDD. AD-AC=BD-BC【答案】C【分析】根据线段之间的和差关系依次进行判断即可得出正确答案.【解答】解: A. AD-CD=AC=AB+BC,正确;B. AC-BC=AD-DB=AB,正确;C. AC-BC=AC+BD,错误;D. AD-AC=BD-BC=CD,正确.选C.3.【答题】平面上有四点,经过其中的两点画直线最多可画出( )A. 三条B. 四条C. 五条D. 六条【答案】D【分析】画出图形即可确定最多能画的直线的条数.【解答】解:如图,最多可画6条直线.选D.方法总结:此题考查直线问题,只有在任意三点不在同一直线时,才能画出最多的直线.4.【答题】为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A. AB<CDB. AB>CDC. AB=CDD. 以上都有可能【答案】B【分析】根据线段的比较,点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,可得答案.【解答】解:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD.选B.5.【答题】线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD =2AB,则线段DC的长为( )A. 4 cmB. 5 cmC. 6 cmD. 2 cm【答案】C【分析】由已知条件可知,BD=2AB,直接代入求值即可.【解答】解:∵BD=2AB,AB=2cm,∴BD=4cm,DC=DB+BC=4+2=6cm.选C.方法总结:在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.6.【答题】已知线段AB=1 cm,BC=3 cm,则点A到点C的距离为( )A. 4 cmB. 2 cmC. 2 cm或4 cmD. 无法确定【答案】D【分析】没有明确A、B、C三点是否在同一直线上,故点A到点C的距离无法确定.【解答】解:选D.7.【答题】下列说法正确的是( )A. 两点之间直线最短B. 画出A,B两点间的距离C. 连接点A与点B的线段,叫A,B两点间的距离D. 两点之间的距离是一个数,不是指线段本身【答案】D【分析】根据线段的性质,两点间的距离的定义对各选项分析判断利用排除法求解.【解答】解: A. 两点之间线段最短,故A错误;B. 量出A,B两点间的距离,故B错误;C. 连接点A与点B的线段的长,叫A,B两点间的距离,故C错误;D. 两点之间的距离是一个数,不是指线段本身,正确.选D.8.【答题】如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N 是DB的中点,AB=7.8 cm,那么线段MN的长等于( )A. 5.4 cmB. 5.6 cmC. 5.8 cmD. 6 cm【答案】A【分析】由已知根据线段的和差和中点的性质可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵M是AC的中点,N是DB的中点,CD=3cm,AB=7.8cm,∴MC+DN=(AB-CD)=2.4cm,∴MN=MC+DN+CD=2.4+3=5..4cm.选A.9.【答题】C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为( )A. 0.8 cmB. 1.1 cmC. 3.3 cmD. 4.4 cm【答案】B【分析】题干中只是说C是线段AB的三等分点,并没有说是哪一个三等分点,线段的三等分点有两个,故应分类讨论,分为AC=AB和BC=AB两种情况.在不同的情况下根据线段之间的关系得出AB的长度.【解答】根据三等分点可得:AC=6.6÷3=2.2cm,根据中点的性质可得:AD=6.6÷2=3.3cm,则CD=AD-AC=3.3-2.2=1.1cm,故选择B.方法总结:本题主要考查的就是中点以及三等分点的性质,属于简单的题型,解决这个问题我们首先要能够根据给出的条件画出图形,然后根据所得的图形进行线段的长度计算.在求线段长度的题目中很多时候我们要根据点的位置关系来进行分类讨论,做题的时候一定要注意这个点是在线段上还是直线上.10.【答题】如图,AB=CD,那么AC与BD的大小关系是( )A. AC=BDB. AC<BDC. AC>BDD. 不能确定【答案】A【分析】由题意已知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【解答】根据AB=CD可得:AC+BC=BD+BC,则AC=BD,故选择A.11.【答题】下列错误的判断是( )A. 任何一条线段都能度量长度B. 因为线段有长度,所以它们之间能比较大小C. 利用圆规配合尺子,也能比较线段的大小D. 两条直线也能进行度量和比较大小【答案】D【分析】根据直线、线段的性质:直线不可以度量,无法比较长短;线段可以度量,能比较长短,逐项判定即可.【解答】直线和射线的长度是无法度量的,则两条直线不能比较大小.12.【答题】如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为( )A. 10B. 20C. 30D. 40【答案】B【分析】灵活运用寻求到的解题线索,搞清图形中隐含的线段之间的和、倍、差的关系,并合理利用等量代换或消元处理等代数方法证明几何问题,用代数方法证明几何中的问题是很重要的方法.【解答】∵点D是线段AC的中点,∴CD=AC,∵点E是线段BC的中点,∴DE=CD+CE= (AC+BC),∴AC+BC=2DE=20.∴AB=AC+BC=20选B.13.【题文】如图,是线段上一点,M是线段的中点,N是线段BC的中点且MN=3cm,则的长为cm.【答案】6【分析】根据线段中点的性质,可得AC+CB=2MN的长,依此可得AB的长.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴AC=2MC,BC=2CN,∴AB=AC+BC=2(MC+CN)=2MN=6cm.故答案为:6.14.【题文】直线上有A,B,C三点,点M是线段AB的中点,点N是线段BC 的一个三等分点,如果AB=6,BC=12,求线段MN的长度.【答案】1或5或7或11.【分析】分类讨论点C在AB的延长线上,点C在B的左边,根据线段的中点,三等分点的性质,可得BM、BN的长,根据线段的和差,可得答案.【解答】解:(1)点C在射线AB上,如:点M是线段AB的中点,点N是线段BC的三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BM+BN=3+4=7,或MN′=BM+BN′=3+8=11;(2)点C在射线BA上,如:点M是线段AB的中点,点N是线段BC三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BN﹣BM=4﹣3=1,或MN′=BN′﹣BM=8﹣3=5.方法总结:本题考查了两点间的距离,分类讨论是解题的关键,根据线段中点的性质,线段的和差,可得出答案.15.【题文】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.【答案】(1)k=2;(2)CD的长为1cm或3cm.【分析】(1)把x=-3代入方程进行求解即可得k的值;(2)由于点C的位置不能确定,故应分点C在线段AB上与点C在BA的延长线上两种情况进行讨论即可得.【解答】解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm;当C在BA的延长线时,如图2,∵BC=2AC,AB=6cm,∴AC=6cm,∵D为AC的中点,∴CD=AC=3cm,即CD的长为1cm或3cm.16.【题文】(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C 在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【答案】(1)5cm;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变化,会出现两种情况:①当点C在线段AB上时,MN==5cm;②当点C在AB或BA的延长线上时,MN=1cm.【分析】(1)(2)在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算;(3)会出现两种情况:①点C在线段AB上;②点C在AB或BA的延长线上.不要漏【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,(2)直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,②当点C在AB或BA的延长线上时,17.【题文】已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【答案】见解析【分析】先在射线上依次截取再截取,则线段【解答】解:如图:,线段AB即为所求.18.【题文】如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD 的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【答案】(1)3(2)4:5【分析】(1)AB:BC:CD=2:4:3,可得线段、线段的长,根据线段的和差,可得线段的长,根据线段中点的性质,可得的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得的长,根据线段的和差,可得的长,根据比的意义,可得答案.【解答】解:(1)由AB:BC:CD=2:4:3,CD=6,得AB=4,BC=8.由线段的和差,得AD=AB+BC+CD=4+8+6=18.由线段中点的性质,得由线段的和差,得MC=MD−CD=9−6=3;(2)由线段的和差,得BM=AM−AB=9−4=5.由比的意义,得AB:BM=4:5.19.【题文】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)1或2;(2)1.5秒;(3)5或 3.5.【分析】(1)分点B在点C的左边和点B在点C的右边两种情况讨论;(2)所走路程为这两条线段的和,用路程,速度,时间之间的关系可求解;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.【解答】解:(1)设运动t秒时,BC=2单位长度,①当点B在点C的左边时,由题意得:3t+2+t=6,解得:t=1;②当点B在点C的右边时,由题意得:3t﹣2+t=6,解得:t=2.(2)(2+4)÷(3+1)=1.5(秒).答:线段AB与线段CD从开始相遇到完全离开共经过1.5秒长时间.(3)存在关系式BD﹣AP=3PC.设运动时间为t秒,①当t=(4+2)÷(3+1)=1.5时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,PA+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即BD﹣AP=3PC;②当1.5<t<2.5时,点C在点A和点B之间,0<PC<2:当点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC当PC=0.5时,有BD=AP+3PC,即 BD﹣AP=3PC,③当t=2.5时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC=0.5时,有BD=AP+3PC,即BD﹣AP=3PC,∵P在C点左侧或右侧,∴PD的长有2种可能,即5或3.5.20.【题文】已知线段AB=6cm,点P是线段AB的中点,E是线段AB延长线上的一点,BE=AB,求线段PE的长.【答案】5cm.【分析】根据线段的倍分关系与和差关系求解. 【解答】解:∵点P是线段AB的中点,AB=6cm,∴PB=AB=3cm,∵EB=AB,∴EB=2cm,∴PE=PB+BE=5cm.。
第1章 基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)

第1章基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,将长方体的表面展开,得到的平面图形不可能是( )A. B. C. D.2、下图是由()图形饶虚线旋转一周形成的A. B. C. D.3、下面是正方体的表面展开图可以是()A. B. C. D.4、下列各几何体中,直棱柱的个数是()A.2B.3C.4D.55、生活中处处有数学,下列原理运用错误的是()A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C.测量跳远的成绩是运用“垂线段最短”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”原理6、正多面体的面数、棱数、顶点数三在之间存在一个奇特的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V-E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.207、下列物体的形状属于球体的是()A. B. C. D.8、下列是正方体展开图的是()A. B. C. D.9、下列几何体不属于多面体的是()A.三棱锥B.球体C.立方体D.四面体10、下列图形绕虚线旋转一周,便能形成圆锥体的是()A. B. C. D.11、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm 2B.33cm 2C.30cm 2D.27cm 212、下列四个图形中,是三棱柱的平面展开图的是()A. B. C. D.13、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为()A.12πB.15πC.12π+6D.15π+1214、下列说法正确的个数是()①连接两点的线中以线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC,则A、B、C三点共线.A.1B.2C.3D.415、如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离 C.两点确定一条直线 D.两点之间,线段最短二、填空题(共10题,共计30分)16、在数轴上,与表示-5的点相距3个单位长度的点表示的数是________.17、在∠AOB中,C,D分别为边OA,OB上的点(不与顶点O重合).对于任意锐角∠AOB,下面三个结论中,①作边OB的平行线与边OA相交,这样的平行线能作出无数条;②连接CD,存在∠ODC是直角;③点C到边OB的距离不超过线段CD的长.所有正确结论的序号是________.18、如图所示,线段AB=14cm,C是AB上一点,且AC=9cm,O为AB的中点,线段OC的长度为________.19、笔尖在纸上快速滑动写出了一个字母,用数学知识解释为________。
青岛版数学七年级上册第一章《基本的几何图形》单元测试1

第1章根本的几何图形一、选择题1.以下物体的形状类似于球的是〔〕A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体〔〕个个个个3.圆柱的侧面展开图可能是〔〕4.以下平面图形不能够围成正方体的是〔〕5.以下图形中,经过折叠可围成长方体的是〔〕6.将“创立文明城市〞六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如下图,那么在这个正方体中,和“创〞相对的字是〔〕A.文B.明C.城D.市7.观察图形,以下说法正确的个数是〔〕A B C DA B DC①直线和直线是同一条直线;②射线和射线是同一条射线; ③.A.1B.2C.3D.08.过平面上A ,B ,C 三点中的任意两点作直线,可作〔 〕 A.1条B.3条C.1条或3条D.无数条9.在直线上顺次取三点,使得,,如果是线段的中点,那么线段的长度是〔 〕 A. B.C. D.10.线段那么线段的长度〔 〕A.一定是5B.一定是1C.一定是5或1D.以上都不对 11.以下说法正确的选项是〔 〕①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的封面是长方形. A .①② B .①③ C .②③ D .①②③12.以下四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短〞来解释的现象有〔 〕 A. ①② B. ①③ C.②④ D.③④ 二、填空题13.如图,图中共有_____条线段,____条射线.O A B C第13题图D EA BC D第7题图14.以下外表展开图对应的立体图形的名称分别是:______、______、______、______.15.如图给出的分别有射线、直线、线段,其中能相交的图形有 个.16.将如下图的图形剪去一个小正方形,使余下的局部恰好能折成一个正方体,应剪去____〔填序号〕.17.如图,C ,D 是线段AB 上两点,假设CB=4cm ,DB=7cm ,且D 是线段AC 的中点,那么AC=_____.18.〔2021·江西中考〕一个正方体有 个面. 三、解答题19.现要在一块空地上种棵树,使其中的每三棵树在一条直线上,这样的要求,你觉得可否实现,假设可以实现,请你设计一下种树的位置图?DA B Cb a①②③④A BDDCB第15题图第17题图BD C20.右图是一个正方体骰子的外表展开图,请根据要求答复以下问题:〔1〕如果1点在上面,3点在左面,那么几点在前面?〔2〕如果5点在下面,那么几点在上面?21.线段AB=10cm,试探讨以下问题:〔1〕是否存在一点C,使它到A,B两点的距离之和等于8cm?〔2〕是否存在一点C,使它到A,B两点的距离之和等于10cm?假设存在,它的位置唯一吗?〔3〕当点C到A,B两点的距离之和等于20cm时,点C一定在直线AB外吗?举例说明.22.如图是一个长方体的外表展开图,每个面上都标注了字母,请根据要求答复以下问题:〔1〕如果面在长方体的底部,那么哪一个面会在上面?〔2〕如果面在前面,面在左面,那么哪一个面会在上面?〔字母朝外〕23.如图,在无阴影的方格中选出两个方格画上阴影,使它们与图中四个有阴影的正方形一起可以构成一个正方体的外表展开图.〔填出两种答案〕24.如图,点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.〔1〕假设线段DE=9cm,,求线段AB的长.〔2〕假设线段CE=5cm,求线段DB的长.25.如图,线段,线段,分别是线段的中点,求线段的长.A EBC F D第25题参考答案1.C 解析:根据生活常识可知乒乓球是球体.应选C .2.B 解析:此题要求所得到的大正方体最小,那么每条棱是由两个小正方体的棱组成,所以要组成新的大正方体至少要小正方体2×2×2=8〔个〕.3.B 解析:圆柱的侧面展开图是长方形,应选B.4.B 解析:利用空间想象能力或者自己动手实践一下,可知答案选B.5.B 解析:A 、C 、D 不能折叠成长方体,只有B 符合条件.6.B 解析:结合展开图可知,与“创〞相对的字是“明〞.应选B .7.C 解析:①直线BA 和直线AB 是同一条直线,正确;②射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确; ③由“两点之间,线段最短〞知AB+BD >AD ,故此说法正确. 所以共有3个正确的.应选C .8.C 解析:当三点共线时,可以作1条直线;当三点不共线时,可以作3条直线.9.D 解析:因为是在直线上顺次取三点,所以.因为O 是线段AC 的中点,所以OA=OC=4cm , 所以OB=AB-OA=5-4=1cm.应选D.10.D 解析:如图,线段AC=3,BC=2,但线段AB 的长度既不是1也不是5,应选D.11.C 解析:教科书是立体图形,所以①不对,②③都是正确的,应选C. 12.D 解析:①②是“两点确定一条直线〞的表达,③④可以用“两点之间,线段最短〞来解释.应选D.13.6 5 解析:线段有:线段OA 、线段OB 、线段AB 、线段AC 、线段BC 、线段OC 、共6条;射线有:,共5条.14.圆柱 圆锥 四棱锥 三棱柱 15.2 解析:①③能相交,②④不能相交.或2或6 解析:根据有“田〞字格的展开图都不是正方体的外表展开图可知,应剪去1或2或6,答案不唯一.17.6cm 解析:因为点D 是线段AC 的中点,所以AC=2DC.第10题答图ABC因为CB=4cm ,DB=7cm ,所以CD=BD-BC=3cm ,所以AC=6cm. 18.6 解析:正方体有上、下、左、右、前、后6个面,均为正方形. 19.解:可以实现,设计图仅供参考.20.解:〔1〕如果1点在上面,3点在左面,那么2点在前面. 〔2〕如果5点在下面,那么2点在上面.21.解:〔1〕不存在.因为两点之间,线段最短.因此.〔2〕存在.线段AB 上任意一点都是. 〔3〕不一定,也可以在直线AB 上,如图,线段.22.解:〔1〕因为面A 与面F 相对,所以面A 在长方体的底部时,面F 在上面. 〔2〕由图可知,如果面F 在前面,面B 在左面,那么面E 在下面. 由图可知,面C 与面E 相对,所以面C 会在上面. 23.解:如图〔答案不唯一〕.24.解:〔1〕因为点是线段的中点,点是线段的中点, 所以,,所以.〔2〕因为点是线段的中点,所以.•• • •• •• ••• •• • • 第19题答图C AB第21题答图因为点是线段的中点,点是线段的中点,所以,所以.25.解:因为线段,线段,所以所以又因为分别是线段的中点,所以所以所以答:线段的长为4cm.。
第1章 基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)

第1章基本的几何图形数学七年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、点A、B为数轴上的两点,若点A表示的数是1,且线段,则点所表示的数为( )A. B. C. 或 D. 或2、小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A.态B.度C.决D.定3、下列说法中,①两条射线组成的图形叫角;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点;正确的有()A.1个B.2个C.3个D.4个4、如图,圆柱的底面直径和高均为4,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离是 ( )A. B. C. D.5、如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是()A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点6、下图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式 a-b+c的值是()A.-4B.0C.2D.47、如图所示,由6块边长为1的相同立方体组成的几何体.其表面积是()A.24B.26C.28D.308、如果有一个正方体,它的展开图可能是下面四个展开图中的()A. B. C. D.9、如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.和D.县10、在下列语句中表述正确的是()A.延长直线ABB.延长射线ABC.作直线AB=BCD.延长线段AB 到C11、图中直线PQ、射线AB、线段MN能相交的是()A. B. C.D.12、下列说法中,正确的是()A.两条射线组成的图形叫做角B.若AB=BC,则点B是AC的中点C.两点之间直线最短D.两点确定一条直线13、某长方体的展开图中,(均为格点)的位置如图所示,一只蚂蚁从点出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到四点,则蚂蚁爬行距离最短的路线是()A. B. C. D.14、如图所示的是一座房子的平面图,组成这幅图的几何图形有()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形15、下列说法中正确的是()A.延长射线OA到点BB.线段AB为直线AB的一部分C.射线OM与射线MO表示同一条射线D.一条直线由两条射线组成二、填空题(共10题,共计30分)16、圆锥有________个面,有________个顶点,它的侧面展开图是________.17、如图,长方体中, , , ,一只蚂蚁从点A出发,以4m/秒的速度沿长方体表面爬行到点C',至少需要________ 分钟.18、如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.19、圆锥的主视图是边长为4cm的等边三角形,则该圆锥侧面展开图的面积是________cm2.20、如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,连接DG.点E从点C运动到点D的过程中,DG的最小值为________.21、某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“爱”字所在面相对的面上的汉字是________.22、如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的等宽弯曲小路,则改造后小路的长度________,草地部分的面积________.(填“变大”,“不变”或“变小”)23、用一个平面去截几何体,若截面是三角形,这个几何体可能是________ ,________ 和________24、平面内有三条直线,如果这三条直线两两相交,那么其交点最少有________个,最多有________个。
七年级上册数学单元测试卷-第1章 基本的几何图形-青岛版(含答案)

七年级上册数学单元测试卷-第1章基本的几何图形-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,下列图形中全部是柱体的有()A. B. C.D.2、如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.43、长方形剪去一个角后所得的图形一定不是()A.五边形B.梯形C.长方形D.三角形4、如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是()A.冷B.静C.应D.考5、如图几何体的展开图形最有可能是()A. B. C. D.6、如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短 D.垂线段最短7、已知A,B,C是直线l上三点,线段AB=6cm,且AB= AC,则BC=()A.6cmB.12cmC.18cmD.6cm或18cm8、如图是一个正方体的表面展开图,若正方体中相对的面上的数或式子互为相反数,则代数式的值为()A.-2B.-1C.1D.09、“笔尖在纸上快速滑动写出数字 6”,运用数学知识解释这一现象()A.点动成线B.线动成面C.面动成体D.面面相交得线10、如图是一个正方体的平面展开图,正方体中相对面上的数字互为相反数,则2x+y的值为()A.0B.﹣1C.﹣2D.111、下图中各图形经过折叠后可以围成一个棱柱的是()A. B. C. D.12、下列四个图形中是三棱柱的表面展开图的是()A. B. C. D.13、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段14、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个15、如图,一个正六棱柱的表面展开后正好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出,宽留出,则该六棱柱的侧面积是( )A. B. C. D.二、填空题(共10题,共计30分)16、在直角三角形ABC中,∠C=90°,如图所示,AB>AC的依据是________,AC+BC>AB 的依据是________.17、如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y 的值为________.18、用一个平面去截一个三棱柱,截面可能是________.(填一个即可)19、点C在射线AB上,若AB=3,BC=2,则AC为________20、如图,是一个物体的展开图(单位:cm),那么这个物体的体积为________.21、如图所示,A地到B地有①②③④四条道路,其中第________ 条道路最近,理由是________22、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是________.23、如图所示,在扇形中,,长为2的线段的两个端点分别在线段、上滑动,E为的中点,点F在上,连结、.若的长是,则线段的最小值是________,此时图中阴影部分的面积是________.24、如图是某个正方体的表面展开图,各个面上分别标有1~6的不同数字,若将其折叠成正方体,则相交于同一个顶点的三个面上的数字之和最大的是________.25、笔尖在纸上写字说明________;车轮旋转时看起来象个圆面,这说明________;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、图中有多少个三角形?28、如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?29、现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?30、如图是一个正方体的表面展开图,请回答下列问题:(1)与面B、C相对的面分别是;(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、B5、B6、B7、D8、C9、A10、C11、B12、A13、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版七年级数学第一
单元测试题
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
七年级数学第一章测试题
一、选一选
1.下列说法中错误的是( ).
A .A 、
B 两点之间的距离为3cm B .A 、B 两点之间的距离为线段AB 的长度
C .线段AB 的中点C 到A 、B 两点的距离相等
D .A 、B 两点之间的距离是线段AB
2.下列说法中,正确的个数有( ).
(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C
(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离
A .1
B .2
C .3
D .4
3.下列说法中,错误的是( ).
A .经过一点的直线可以有无数条
B .经过两点的直线只有一条
C .一条直线只能用一个字母表示
D .线段CD 和线段DC 是同一条线段
4.如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ).
A .CD=AC-BD
B .CD=2
1BC C .CD=21AB-BD D .CD=AD-BC 5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).
A .M 点在线段A
B 上
B .M 点在直线AB 上
C .M 点在直线AB 外
D .M 点可能在直线AB 上,也可能在直线AB 外
6.下列图形中,能够相交的是( ).
7.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).
A .8cm
B .2cm
C .8cm 或2cm
D .4cm
二、填空
8. 笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________.
9.如图1-4,A ,B ,C ,D 是一直线上的四点,则 ______ + ______
=AD -AB ,AB +CD= ______ - ______ .
图4
10.如图1-5,OA 反向延长得射线 ______ ,线段CD 向 ______ 延长得直线CD .
11.四条直线两两相交,最多有 ______ 个交点.
12.经过同一平面内的A ,B ,C 三点中的任意两点,可以作出 ______ 条直线.
三.解答题
13、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
14.读下面的语句,并按照这些语句画出图形.
(1)点P 在直线AB 上,但不在直线CD 上。
(2)点Q 既不在直线l 1上,也不在直线l 2上。
(3)直线a 、b 交于点o ,直线b 、c 交于点p ,直线c 、a 交于点q 。
(4)直线a 、b 、c 两两相交。
(5)直线a 和b 相交于点P ;点A 在直线a 上,但在直线b 外.
15.过一点能确定几条直线两点呢三点呢
16.如图8,C 为线段AB 的中点,N 为线段CB 的中点,CN=1cm.求线段CB 、线段AC 、线段AB 的长.
17. 如图4,AB=24cm ,C 、D 点在线
段AB 上,且CD=10cm ,M 、N 分别是AC 、BD 的中
点,求线段MN 的长.
答
案 一、D A C B D D C
二、8、点动成线、线动成
面、面动
成体
9、BC+CD AD-BC
两方 或3 13.略14.略
15.无数、一条、一条或3条
厘米、2厘米、4厘米
厘米 图4 图8。