多项式的乘法优秀教案
多项式乘多项式 优秀教案

多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。
2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。
3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。
【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。
难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。
【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。
2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。
注意:每一项必须连同前面的符号相乘。
二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。
(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。
《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生掌握多项式乘以多项式的运算法则。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生的数学思维能力和团队协作能力。
二、教学内容1. 多项式乘以多项式的定义和运算法则。
2. 多项式乘以多项式的计算方法。
3. 多项式乘以多项式在实际问题中的应用。
三、教学重点与难点1. 教学重点:多项式乘以多项式的运算法则和计算方法。
2. 教学难点:多项式乘以多项式在实际问题中的应用。
四、教学方法1. 采用讲解法、演示法、练习法、讨论法等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 分组讨论,培养学生的团队协作能力。
五、教学步骤1. 导入新课:通过复习单项式乘以单项式的运算法则,引出多项式乘以多项式的概念。
2. 讲解多项式乘以多项式的运算法则,并用多媒体课件展示计算过程。
3. 举例讲解多项式乘以多项式的计算方法,让学生跟随老师一起动手操作。
4. 进行课堂练习,让学生独立完成多项式乘以多项式的计算。
5. 组织学生进行分组讨论,探讨多项式乘以多项式在实际问题中的应用。
6. 总结本节课所学内容,强调多项式乘以多项式的运算法则和计算方法。
7. 布置课后作业,巩固所学知识。
六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对多项式乘以多项式的理解和掌握程度。
2. 评估学生在解决实际问题时,运用多项式乘以多项式的能力。
3. 观察学生在课堂上的参与程度、提问回答和小组合作情况,评价其数学思维能力和团队协作能力。
七、教学资源1. 多媒体课件:用于展示多项式乘以多项式的计算过程和实际应用案例。
2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。
3. 小组讨论工具:如白板、彩笔等,用于小组内讨论和展示。
八、教学进度安排1. 第1周:导入多项式乘以多项式的概念,讲解运算法则。
2. 第2周:讲解多项式乘以多项式的计算方法,进行课堂练习。
3. 第3周:探讨多项式乘以多项式在实际问题中的应用,进行小组讨论。
多项式乘多项式-优秀教案可修改全文

可编辑修改精选全文完整版多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。
2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。
3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。
【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。
难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。
【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。
2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。
注意:每一项必须连同前面的符号相乘。
二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。
(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。
3.3《多项式的乘法(1)》参考教案1

3.3 多项式的乘法(1)参考教案
一、背景介绍及教学资料
本教材在单项式的乘法之后直接安排多项式的乘法,显得贴切自然,多项式乘以多项式是整式乘法的一部分.本课时利用对同一面积不同表达和分配律的运用两个方面,探索多项式相乘的运算法则,进而体会分配律的重要作用,以及转化思想,并从理解的角度掌握多项式乘法法则.
二、教学设计
【教学内容分析】
本节课从同一面积的不同表达入手,通过分析讨论,进一步体会分配律的作用的情况下得到多项式相乘法则.由法则可知:(1)多项式与多项式相乘的结果仍是多项式;(2)结果的项数应该是原两个多项式项数的积(没有经过合并同类项之前),检验项数常常作为检验解题过程是否的一个有效方法.
【教学目标】
1、经历探索多项式乘法法则的过程,理解多项式乘法法则.
2、学会用多项式乘法法则进行计算.
3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想.
【教学重点、难点】
重点是掌握多项式的乘法法则并加以运用.
难点是理解多项式乘法法则的推导过程和运用法则进行计算.
【教学准备】
展示课件.
【教学过程】。
多项式的乘法教案,初中数学不再难

多项式的乘法是数学中一个非常重要的知识点,也是初中数学中较难的一部分,在学习这部分内容的时候,很多学生都会感到困难。
只要我们掌握了一定的方法,加上勤奋的学习,就能够轻松掌握这一部分的知识,从而让初中数学不再难。
一、常见的多项式在学习多项式的乘法之前,我们需要先了解一下常见的多项式。
所谓多项式,就是指若干个数相乘或相加的表达式,而这些数又被称为“项”。
例如下面几个式子都是多项式:(1)3x + 4y(2)5x² + 2xy + 9(3)2x³ + 3x²y + 4xy² + 5y³其中,式(1)只有两项,分别为3x和4y;式(2)有三项,分别为5x²、2xy和9;式(3)有四项,分别为2x³、3x²y、4xy²和5y³。
二、多项式的乘法多项式的乘法是指两个或多个多项式相乘的过程。
例如,我们要计算下面两个多项式的积:(1)(2x + 3)(x + 4)(2)(4x² + 2xy + 1)(3x + 2y)对于式(1),我们可以使用“分配律”来计算,即(2x + 3)(x + 4)= 2x×x + 2x×4 + 3×x + 3×4= 2x² + 8x + 3x + 12= 2x² + 11x + 12对于式(2),我们也可以用分配律来计算,但由于它更为复杂,我们可以采用“竖式乘法”的方法,即将两个多项式按照竖线分别写出,分别乘以对方的每一项,并将结果相加,最终得到积。
具体可以参考下面的计算过程:三、多项式乘法的简便方法虽然上面的方法可以用来计算多项式的乘法,但当多项式较为复杂时,这种方法就显得很繁琐,容易出错。
我们需要寻找一种更为简便、实用的计算方法,以便更方便地解决问题。
下面,我们介绍两种常用的多项式乘法简便方法:代数法和公式法。
1.代数法代数法是一种很好用的方法,它可以帮助我们简单地解决一些多项式乘法问题。
《多项式与多项式相乘》参考教案

12.2整式的乘法(三)多项式与多项式相乘教学目标1.能说出多项式与多项式相乘的法则,并且知道多项式乘以多项式的结果仍然是多项式。
会实行多项式乘以多项式的计算及混合运算。
2.培养学生灵活使用所学知识分析问题、解决问题的水平。
3.培养独立思考、主动探索的习惯和初步解决问题的愿望及水平。
教学重难点重点:掌握多项式乘以多项式的法则。
难点:使用法则实行混合运算时,不要漏项。
教学过程一、复习活动。
指名学生说出单项式与多项式相乘的法则。
(单项式乘以多项式就是用单项式乘以多项式中的每一项,再把所得的积相加。
)二、引导观察,图形演示。
1.式子p(a+b)=pa+pb中的p,能够是单项式,也能够是多项式。
假如p=m +n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题。
(由此引出课题。
)你会计算这个式子吗?你是怎样计算的?(教师引导学生由繁化简,把m+n看作一个整体,使之转化为单项式乘以多项式,即:[(m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb。
] 2.你能用图形验证你算出的式子吗?某地区在退耕还林期间,有一块原长m米、宽a米的长方形林区增长了n 米,加宽了b米。
请你表示这块林区现在的面积。
问题:(1)如何表示扩大后的林区的面积?(2)用不同的方法表示出来后的等式为什么是相等的呢?(学生分组讨论,相互交流得出答案。
)学生得到了两种不同的表示方法,一个是(m+n)(a+n)米2;另一个是(ma+mb+na+nb)米2.以上的两个结果都是准确的。
3.观察这个结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?假如能得到,又是怎样相乘得到的?(教师示范。
)你能用语言表达这个式子吗?多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb。
多项式的乘法

教案设计
一、教案背景
1,面向学生:□中学□小学2,学科:数学
2,课时:1
3,学生课前准备:
(1)回忆单项式与多项式的乘法法则.
(2)计算:
① ②
③ ④
二、教学课题
教养方面:
1.理解和掌握单项式与多项式乘法法则及其推导过程.
2.熟练运用法则进行单项式与多项式的乘法计算.
这个法则还可利用一个图形明显地表示出来.
(1)这个长方形的面积用代数式表示为_____________.
(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为___8185.html
四、教学方法
本节课我采用讨论法、讲练结合等方法,主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是 的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.
在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.
六、教学反思
多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理。
例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.
4.运用知识,尝试解题
《多项式的乘法》教案

《多项式的乘法》教案第一课时教学目标知识与技能1.知道利用乘法分配律可以将单项式乘多项式转化为单项式乘单项式.2.会进行单项式乘多项式的计算.过程与方法1.通过面积的计算领会用长方形面积图或乘法的分配律说明单项式与多项式相乘的法则.2.经历探究单项式乘多项式法则的过程,发展有条理的思维和语言表达能力. 情感、态度与价值观1.理解整式的乘法运算的原理,体会乘法分配律的作用和转化思想.2.注意学生学习积极性,主动性的调动,增强学生学习数学重点难点重点单项式与多项式相乘的法则.难点单项式的系数的符号是负号时的情况.教学设计一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x )·(3x )2(2)(-3x )·(-x )(3)31xy ·32xy 2 (4)-5m 2·(-31mn )(5)-51x 2y 4-2x 2y ·(-21x 2y 2) 二、创设情境,引入新课 小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了61a 米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【情境问题】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A 牌空调,他们在一年内的销售量(单位:台)分别是x ,y ,z ,请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A 牌空调的总量(单位:台),再计算出总的收入(单位:元).即:n (x +y +z ).方法二:采用分别计算出三家超市销售A 牌空调的收入,然后再计算出他们的总收入(单位:元).总结规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.例题解析:例10 计算:2112412()()();x y xy x ∙-+ 2212442()()().b b ab -∙- 例11 求 22212442()-()x x y y x x y ∙-∙-的值,其中x =2,y =-1. 三、范例学习,应用所学1、计算:(-2a 2)·(3ab 2-5ab 3).解:原式=(-2a 2)(3ab 2)-(-2a 2)·(5ab 3)=-6a 3b 2+10a 3b 32、化简:-3x 2·(13xy -y 2)-10x ·(x 2y -xy 2) 解:原式=-x 3y +3x 2y 2-10x 3y +10x 2y 2=-11x 3y +13x 2y 23、解方程:8x (5-x )=19-2x (4x -3)40x -8x 2=19-8x 2+6x40x-6x=19 34x=19x=19 34四、随堂练习,巩固深化计算:(1)5x2·(2x2-3x3+8)(2)-16x·(x2-3y)(3)-2a2·(12ab3+b3)(4)(23x2y3-16xy)·12xy2五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.第二课时教学目标知识与技能1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算.2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.过程与方法在解决问题的过程中,注重与他人合作,培养学生的语言表达能力.情感、态度与价值观培养学生语言表达能力,以及与他人沟通、交往的能力.重点难点重点掌握多项式的乘法法则并加以运用.难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”和“符号”的问题.教学设计一、创设情境,操作感知【动手操作】首先,在硬纸板上用直尺画出一个矩形,并且分成如下图所示的四部分,标上字母.拿出准备好的硬纸板,画出上图1,并标上字母.根据图中的数据,求一下这个矩形的面积.计算出它的面积为:(m+b)×(n+a).将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如下图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).继续沿着横的线段剪开,将图形分成四部分,如图3,然后再求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.例题解析:例12 计算:(1)(2x+y)(x-3y);(2)(2x+1)(3x2-x-5);(3)(x+a)(x+b).例13 计算:1)(a+b)(a-b);(2)(a+b)2 ;(3)(a-b)2.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?二、法则应用下面我们利用法则来做计算.计算(1)(3x+1)(x+2)(2)(x-8y)(x-y)(3)(x+y)(x2-xy+y2)解:(1)(3x+1)(x+2)(2)(x-8y)(x-y)= 3x2·x+(3x)·2+1·x+1×2 =x2-xy - 8x + 8y2= 3x2+6x+x+2 =x2-9xy+8y2= 3x2+7x+x+2(3)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3注:不要漏掉任何一项,注意符号巩固练习1.(1)(2x+1)(x+3):(2)(m+2m)(m-3m)=2x2+7x+3 =m2-m(3)(a-1)2(4)(a+3b)(a-3b)=a2-2a+1 =a2-9b2(5)(2x2 -1)(x-4)(6)(x2+3)(2x-5)= 2x3+8x2+x-4 =2x3-5x2-6x-15三、课堂总结,发展潜能1.多项式与多项式相乘,应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项式的乘法
【教学目标】
1.经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。
2.会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。
3.会用多项式的乘法解决简单的实际问题。
【教学重难点】
多项式与多项式相乘的运算。
【教学过程】
一、创设情境,引出课题
小明找来一张铅画纸包数学课本,已知课本长a 厘米,宽b 厘米,厚c 厘米,小明想将课本封面与封底的每一边都包进去m 厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?
二、引出新知,探究示例
1.合作探索学习:有一家厨房的平面布局如图1
(1)请用三种不同的方法表示厨房的总面积。
(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?
(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律
吗?
(让学生以同桌合作的形式进行探索,然后表达交流)
答:
(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm
(2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①
=ab+am+nb+nm ……② 第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。
(3)由(a+n)(b+m)=ab+am+nb+nm 师生共同总结得出多项式与多项式相乘的法则: (学生归纳,教师板书)
2.运用新知,计算例题
例1:计算
n
a m 右侧 矮矮柜 b
(1)(x+y)(a+2b) (2)(3x-1)(x+3) (3)(x-1)2
解:(1)(x+y)(a+2b)=x •a+x •(2b)+y •a+y •(2b)=ax+2bx+ay+2by
(2)(3x-1)(x+3)=3x2+9x-x-3=3x2+8x-3
(3)(x-1)2=(x-1)(x-1)=x2-x-x+1=x2-2x+1
教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。
例2,先化简,再求值:(2a-3)(3a+1)-ba(a-4),其中a=
721-
解:(2a-3)(3a+1)-ba(a-4)=6a2+2a-9a-3-6a2+24a=17a-3
当a=721-时,原式=17a-3=17×(1719-)-3=-19-3=-22 注意的几点:(1)必须先化简,再求值,注意符号及解题格式。
(2)当代入的是一个负数时,添上括号。
(3)在运算过程中,把带分数化为假分数来计算。
反馈练习:计算当y=-2时,(3y+2)(y-4)-(y-2)(y-3)的值。
三、分层训练,能力升级
1.填空
(1)(2x-1)(x-1)=
(2)x(x2-1)-(x+1)(x2+1)=
(3)若(x-a)(x+2)=x2-6x-16,则a=
(4)方程y(y-1)-(y-2)(y+3)=2的解为
2.某地区有一块原长m 米,宽a 米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为 平方米。
3.某人以一年期的定期储蓄把2000元钱存入银行,当年的年利率为x ,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?
四、小结
让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。
【作业布置】
课本的分层作业题。