平方根与立方根知识点

合集下载

八年级上册数学《实数》平方根和立方根_知识点整理

八年级上册数学《实数》平方根和立方根_知识点整理

平方根和立方根一、知识要点1、平方根:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:① 当0=a 时,它的平方根只有一个,也就是0本身;② 当0>a 时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

③ 当0<a 时,也即a 为负数时,它不存在平方根。

2、算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例1 求下列各数的算术平方根(1)64;(2)2)3(-;(3)49151. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.解:(1)因为6482=,所以64的算术平方根是8,即864=;(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-;(3)因为496449151=,又4964)78(2=,所以49151的算术平方根是78,即7849151=. 注意:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根是3,而不是 3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74149161=的错误. 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表示16的负平方根,故其结果是负数;259表示259的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.解:(1)因为8192=,所以±81=±9.(2)因为1642=,所以-416-=. (3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53. (4)因为22)4(4-=,所以4)4(2=-. 3、立方根(1)如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。

人教版七年级实数平方根与立方根

人教版七年级实数平方根与立方根

平方根与立方根 知识点一:算术平方根1.定义一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的__________.2.表示方法a 的算术平方根记为__________,读作“根号a ”,a 叫被开方数.3.算术平方根的性质①正数a a②0的算术平方根是00=__________;③负数没有算术平方根.④a a 是非负数,即a ≥0a a ≥0.【例1-1】求下列各数的算术平方根.①10 ②25 ③6449 ④0.01 ⑤23【例1-2】设3-a 是一个数的算术平方根,那么( ).A .a ≥0B .a >0C .a >3D .a ≥3【例1-3】算术平方根等于它本身的数有__________.【例1-4】13-m 的算术平方根是2,16-+n m 的算术平方根是3,求n m 29+的算术平方根.举一反三1. 16的算术平方根是________.2. 已知正方形的边长为 a ,面积为 S ,下列说法中:①a S =;①S a =;①S 是a 的算术平方根;①a 是S 的算术平方根.正确的是( )A .①①B .①①C .①①D .①①3. 12+x 的算术平方根是2,则x =________.4. 已知,()132++-=b a y ,当b a ,取不同的值时,y 也有不同的值.当y 最小时,求a b 的非算术平方根.知识点二:平方根1. 平方根的概念一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的________或二次方根.【注意】在这里,a 是x 的平方数,它的值是正数或零,因为任何数的平方都不可能是负数,即a ≥0.2. 平方根的性质①一个正数a 有_______个平方根,其中一个是“a ”,另一个为“a -”,它们互为相反数; ②0的平方根是0;③负数没有平方根.3. 开平方的概念求一个数a 的平方根的运算,叫做__________.4. 利用平方根的定义解方程将各式转化为等号的左边是含x 的一个式子的平方式,右边是一个非负数的形式,如m x =2或()()02≥=+m m b ax ,然后利用平方根的定义得到m x ±=或m b ax ±=+,进而得到原方程的解.5.平方根与算术平方根的区别①定义不同;②个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个; ③表示方法不同,正数a 的平方根表示为a a a ;④取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.【例2-1】25的平方根是( ).A .5B .-5C .5±D .±5【例2-2】 下列说法正确的( ). ①2-是2的一个平方根;②4-的算术平方根是2;③16的平方根是±2;④0没有平方根.A .①②③B .①④C .①③D .②③④【例2-3】求下列各式的值: ①144 ②81.0- ③196121±④256【例2-4】 求下列各式中的x .x 2=17 0491212=-x 【例2-5】若一个正数的算术平方根是a ,则比这个数大3的正数的平方根是( ). A .32+a B .32+-a C .32+±a D .3+±a举一反三1. ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.492. 下列说法中正确的是( )A .81的平方根是3±B .1的立方根是±1C .11±=D .5-是5的平方根的相反数3. 计算.=412___________ =±169___________ =-2894___________ 4. 求下列各式中x 的值. ()16142=-x ()011242=-+x5. 已知9的算术平方根是a ,b 的平方是25,求ab 的值.知识点三:立方根1.立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的__________或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.2. 表示方法:一个数a 的立方根,用符号3a 表示,读作:“三次根号a ”,其中a 是被开方数,3是根指数.注:互为相反数的两数的立方根也互为相反数.3.开立方求一个数的立方根的运算,叫做__________. 性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;33a a -= ③3333()a a =a .开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.4.平方根和立方根的区别和联系①被开方数的取值范围不同 在a a 是非负数,即a ≥03a 中,被开方数a 是任意数.②运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.【例3-1】 -64的立方根是( ).A .-4B .4C .±4D .不存在【例3-2】 下列计算中,错误的是( ).A 30.125B 3273644-=-C 3313182=D .3821255-=-【例3-3】若83-=a ,则a =__________.【例3-4】已知,一个正数的平方根是12-a 与a -2,求a 的平方的相反数的立方根.【例3-5】 已知12-a 的平方根是3±,13-+b a 的立方根是4,求b a +的平方根.举一反三 1. 33(1)- ).A .-1B .0C .1D .±1 2. 求下列各式的值:(130.001 (23343125- (3)327191--.3. 求下列各式中的x .012583=+x ()2733=+x4. 若32+a 和12-a 是数m 的平方根,求m 的值.5. 已知12+x 1362-+y x 的立方根是2.(1)求y x ,的值;(2)求xy 3的平方根.知识点四:非负性的运用非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

平方根与立方根知识点总结

平方根与立方根知识点总结

平方根与立方根知识点总结1. 平方根平方根是指一个数的平方等于给定数的正数解。

以√a表示a的平方根,其中a为非负实数。

1.1 平方根的概念对于非负实数a,如果存在一个非负实数x,使得x的平方等于a,则这个非负实数x被称为a的平方根。

平方根的记号为√a。

1.2 平方根的性质- 平方根不一定是一个整数,可以是一个无理数或者有理数。

- 非负实数的平方根有两个解,一个是正数,另一个是负数,但我们在常见的情况下只讨论正数平方根。

- 非负实数的平方根可以通过求解方程x^2 = a得到。

2. 立方根立方根是指一个数的立方等于给定数的正数解。

以³√a表示a的立方根,其中a为实数。

2.1 立方根的概念对于实数a,如果存在一个实数x,使得x的立方等于a,则这个实数x被称为a的立方根。

立方根的记号为³√a。

2.2 立方根的性质- 立方根不一定是一个整数,可以是一个无理数或者有理数。

- 实数的立方根有两个复数解和一个实数解,其中实数解为正数立方根。

- 实数的立方根可以通过求解方程x^3 = a得到。

3. 计算平方根与立方根3.1 通过近似方法计算- 对于非完全平方数和非完全立方数,可以通过近似方法利用计算器或者数学软件计算得到一个接近真实值的结果。

3.2 通过公式计算- 对于完全平方数,可以利用公式进行计算。

例如,对于一个完全平方数a,其平方根可以通过√a = a的1/2次方得到。

- 对于完全立方数,可以利用公式进行计算。

例如,对于一个完全立方数a,其立方根可以通过³√a = a的1/3次方得到。

4. 应用场景平方根和立方根在日常生活和科学领域中有广泛的应用。

4.1 数学- 在代数中,求解方程的过程中常常需要计算平方根和立方根。

- 在概率统计中,方差和标准差的计算中,需要使用平方根。

- 在计算几何中,勾股定理的应用需要计算平方根。

4.2 自然科学- 物理学中,运动速度、加速度等的计算中,需要使用平方根。

平方根和立方根知识点总结及练习

平方根和立方根知识点总结及练习

【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3 (4)一个正数有两个平方根,即正数进行开平方运算有两个结果; 一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,2个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如=5,=50。

(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

数的开方知识点

数的开方知识点

数的开方知识点 Revised as of 23 November 2020平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示, a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣”表示,a 的平方根合起来记作“”,其中“”读作“二次根号”,“”读作“二次根号下a”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:区别:1定义不同 2个数不同:3表示方法不同:联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,a叫做被开立方数(2)开立方:求一个数a的立方根的运算叫做开平方。

(3)立方根的性质:A正数有一个正立方根 B负数有一个负立方根 C零的3a立方根是零(4)立方根的表示:数a的立方根我们用符号来表示,读作"三次根号a",其中a叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

(完整版)平方根与立方根知识点小结

(完整版)平方根与立方根知识点小结

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0有意义的条件是a ≥0。

4、公式:⑴)2=a (a ≥0)=(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根(1);(2); (3); ⑷ 642)3(-4915121(3)-例2 求下列各式的值(1); (2); (3); (4).81±16-2592)4(-(5),(6),(7)(8)44.136-4925±2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ ; ⑶ 0.72910227-二、巧用被开方数的非负性求值.大家知道,当a≥0时,a 的平方根是±,即a 是非负数.a 例4、若求y x 的立方根.,622=----y x x 练习:已知求的值.,21221+-+-=x x y y x 三、巧用正数的两平方根是互为相反数求值.我们知道,当a≥0时,a 的平方根是±,而a .0)()(=-++a a 例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若和是数的平方根,求的值.32+a 12-a m m 四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道,即a=0时其值最小,换句话说的最小值是零.0≥a a 例4、已知:y=,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.)1(32++-b a ,求xyz 的值。

平方根与立方根知识点小结

平方根与立方根知识点小结

平方根与立方根知识点小结平方根"与"立方根"知识点小结一、知识要点1、平方根:⑴、定义:如果$x^2=a$,则$x$叫做$a$的平方根,记作"$\pm \sqrt{a}$"($a$称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;$0$的平方根是$0$;负数没有平方根。

⑶、算术平方根:正数$a$的正的平方根叫做$a$的算术平方根,记作"$\sqrt{a}$"。

2、立方根:⑴、定义:如果$x^3=a$,则$x$叫做$a$的立方根,记作"$\sqrt[3]{a}$"($a$称为被开方数)。

⑵、性质:正数有一个正的立方根;$0$的立方根是$0$;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是$0$;算术平方根是其本身的数是正数和$0$;立方根是其本身的数是正数和负数$1$。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3、$a$本身为非负数,即$a\geq 0$;$a$有意义的条件是$a\geq 0$。

4、公式:⑴$(\sqrt{a})^2=a$($a\geq 0$);⑵$-\sqrt[3]{a}=-3\sqrt[3]{a}$($a$取任何数)。

5、非负数的重要性质:若几个非负数之和等于$0$,则每一个非负数都为$0$(此性质应用很广,务必掌握)。

例1:求下列各数的平方根和算术平方根1)$64$;(2)$(-3)$;(3)$1$例2:求下列各式的值1)$\pm 81$;(2)$-16$;(3)$\sqrt{2}$;(5)$1.44$,(6)$-36$,(7)$\pm \sqrt{3}$例3:求下列各数的立方根:⑴$343$;⑵$-\frac{2}{115}$;⑷$(-3)^{\frac{2}{9}}$;(4)$-4$.8)$-\sqrt[3]{25}$;⑶$0.9$二、巧用被开方数的非负性求值.大家知道,当$a\geq 0$时,$a$的平方根是$\pm a$,即$a$是非负数。

数的开方(平方根与立方根)

数的开方(平方根与立方根)

一、知识点归纳:1、平方根(1) 平方根的意义:如果一个数的平方等于 a ,这个数就叫做a 的平方根。

a 的平方根记作:±20或±丿5。

求一个数a 的平方根的运算叫做开平方 . (2) 平方根的性质①一个正数有两个平方根,它们互为相反数② 0有一个平方根,它是 0本身③负数没有平方根。

(3) 平方和开平方互为逆运算;2、算术平方根(1)算术平方根的意义:非负数 a 的正的平方根。

一个非负数a 的平方根用符号表示为:“ j a ”读作:“根号a ”其中a 叫做被开方数 (2) 算术平方根的性质①正数a 的算术平方根是一个正数;② 0的算术平方根是0;③负数没有算术平方根。

3、立方根(1)立方根的意义如果一个数的立方等于 a ,那么这个数叫做 a 的立方根(也叫三次方根)。

如果x3=a ,则x 叫做a 的立方根。

记作:x=需 ,读作三次根号a ”求一个数的立方根的运算叫做开立方。

(2)立方根的性质">0②一个负数有一个负的立方根, 即若a<0,则V^0③0的立方根是0,即若a=0,则3垢=0 。

重要性质:旷弓=-V a (3)立方与开立方互为逆运算。

二、典型例题: 例1、x 为何值时,寸X +1(5)X —1例2、已知2a-1的算术平方根是 3,3a+b-1的平方根是 ±4,求a+2b 的平方根。

例3、若X 、y 都是实数,且y = J x -3 + J 3-X +2,求x+3y 的平方根。

例4、如果M =aP a +b +3是a+b+3的算术平方根, N =2噪a + 2b 是a+2b 的立方根,求M — N 的立方根。

第12章数的开方重要性质:J a 2=a ,(需 $ = a(a >0)下列代数式有意义。

(1W 3 + 2x(2) J x -2 + J 2—X(3) J x 2+31(4) -^= 如一1①一个正数有一个正的立方根, 即若a>0,则 (6) (X-1)2例5、已知a,b,c 实数在数轴上的对应点如图所示,化简V a 2- a -b + c-a + J (b -C)2三、课堂练习:1、填空:(10)某种洗衣机的包装箱是长方形,其高为1.2m ,体积为1.2 m 3,底面是正方形,则该包装箱的底面边长m.(11)已知△ ABC 的三边长分别为a 、b 、c,,且满足7rW+|b -4+(c -3)2=0,则此△ ABC 的周长= (12 )请你观察、思考下列计算过程:因为112=121,所以 J121=11,同样,因为111^12321 ,所以 J12321 =111,由此猜想 J12345678987654321 =2、选择: (1) (2) 一个数的平方根是它本身,则这个数的立方根是( -1 D 、1, -1 或 0 () A 、 1 B 、 0 C 、 下列各式中无意义的是A 、 —J 3B J-32).±J(-3丫(3) A下列说法正确的是( 、4的平方根是2、-16 的平方根是C 、实数a 的平方根是 土 J a 、实数a 的立方根是V a (4)有理数中,算术平方根最小的是)(1) 0.25的平方根是9 2的算术平方根是J 16 的平方根是 - J 2的相反数是,73的倒数是J 3 -1的绝对值是(16=±层,V (」)2(4)时,有意义;若 有意义,则x 时,j3-m 有意义;当m时,3治-3有意义(5)j 81的平方根是 ,74的算术平方根是邸64的平方根是,764的立方根若一个正数的平方根是 2a -1和-a + 2,贝U a =,这个正数是(7) 如果有-是m 的一个平方根,那么m 的算术平方根是 (8) 计算:口 +伙-1)2 + J (-1)2 =(9)已知 j 2a -1 +(b +3)2 =0,则 #竽=;(a+2)2+ |b — 1|+ J 3— C = 0,贝y a + b + c =、0.1A 、1B 、0 C(5)下列说法中,正确的是( D 、不存在)•A 、27的立方根是3,记作J27=3B 、-25的算术平方根是5C 、a 的三次立方根是 土蚯D 、正数a 的算术平方根是 j a(6) V a 的值是( )• (A ) 是正数 (B) 是负数 (C )是零 以上都可能(7) 若 X 2 =(-0.7 丫,则 X = ( )• (8) (9) (A) -0.7 ( B) ±).7(C ) 0.7 ( D ) 0.49下列等式:① ② y( - 2 ) = -2,③ J( - 2 ) = 2, ⑥-44 = —2;正确的有( )个. (A) 4 ( B) 3 ( C) 2 ( D) 1 设 x 、y 为实数,且 y =4+J 5-X + J x-5 , 则|x —y 的值是( (10) (11) (12) (13)下列说法中正确的是( A 、4是8的算术平方根 下列各式中错误的是( 下列计算中正确的是( A 、J T8=J 32X 2=3 运 ).B 、16的平方根是 4C 、).B 、Q 0.36 = 0.6).④审= -V 8 ⑤ 716 = ±4, V 6是6的平方根D 、 -J1.44 = —1.2 D 、 B 、、/皿一心4-3"乎击不改变根式的大小把 (a —q丄 根号外的因式移入根号内,正确的是((A) J 1-a (B W a —1 (C) -J a —1 -a 没有平方根J1.44 =±1.2莎=2 D、J 4^ =2a(D) - J 1-a).3、求下列各数的平方根和算术平方根: (1)空 4 (-4f(3) (- 2卜(一8 )•4、计算:6、已知实数 a,b,c 满足 一 a-b + J 2b +c +(c -7、a 、b 在数轴上的位置如图所示,化简: J (a +1)2 + J (b -1)2 - J (a-b)2.abI _ !■ _. I J. ■ 1 •-2-1 0 1 2+------------ + ab (a + 1)(b +1) (a + 2)(b+2)+ 中(a +2004)( b + 2004)的值.(4)7001 5、解方程: (1) 4x 2=9 2(2) (X +1) =1⑶(5-3x(121-——=0 . 493(4)(x+3) =27(5) (2x-1)' =-8(6) 64(x-1)3+125=08、已知 2x-1的平方根是± 3, 3x+y-1的平方根是± 4,求x+2y 的平方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根与立方根知识点平方根
1.概念:
(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数
(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数
B零有一个平方根,它是零本身
C负数没有平方根
(4)平方根的表示:一个正数a的正的平方根,用符号2a表示, a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣2a”表示,a的平方根合起来记作“±2a,其中“2”读作“二次根号”“2a”读作“二次根号下a ”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“±2a”读作“正、负根号a”
(5)算术平方根:注:
1)算术平方根是非负数,具有非负数的性质;
2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;
3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.
2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:
①被开方数a是非负数,即a≥0. ②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:
区别:1定义不同 2个数不同:3表示方法不同:
联系:①具有包含关系:
②存在条件相同:
立方根
(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,
a叫做被开立方数
(2)开立方:求一个数a的立方根的运算叫做开平方。

(3)立方根的性质:A正数有一个正立方根 B负数有一个负立方根 C零的立方根是零
(4)立方根的表示:数a的立方根我们用符号3a来表示,读作"三次根号a",其中a
叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.
相关概念
某数的平方的算术平方根等于某数的绝对值,即
非负数的积的算术平方根等于积中各因式的算术平方根的积,即
(a≥0,b≥0)。

非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,
即(a≥0,b>0)。

开方运算
我们知道,当a≥0时,│a│=a;当a<0时,│a│=a.综上所述,有。

相关文档
最新文档