第四章结构力学静定拱

合集下载

结构力学4静定结构的位移计算

结构力学4静定结构的位移计算

4.3 平面杆件结构位移计算的一般公式
4.3.1 单位荷载法与结构位移计算的一般公式
P R1 1
F D 1 D F
c F R 2 c2 D F R c
c2 c1
d d du i1
D F R c M d FQ dh FN du
河南理工大学万方科技学院
结构力学
第四章 静定结构的位移计算
F1 1 FB B F2 2 F3 3 0
(a)
虚位移之间的关系为 1 1 1 B 2 2
1 1 4 2 2 2 C B B 2 2 3 3 3
1 1 1 1 3 E 2 B 2 2 3 3 1 2 1 将以上各关系式代入式(a),得 FB F1 F2 F3 2 3 3 河南理工大学万方科技学院
4.1.3 计算位移的方法
虚功法——依据虚功原理的单位荷载法。
河南理工大学万方科技学院
结构力学
第四章 静定结构的位移计算
4.2 变形体系的虚功原理 4.2.1 实功与虚功 1.功

W FD cos
W 2 Fr
α
力,Δ表示广义位移) Δ
功是力与位移的矢量点积
a c l
河南理工大学万方科技学院
结构力学
第四章 静定结构的位移计算
沿所求位移方向虚设单位荷载 F=1的方法称为 单位荷载法,或称为单位力法。 当支座有给定位移时,静定结构的位移可用单 位荷载法来求解,其计算步骤如下: 1. 沿欲求位移的方向虚设相应的单位荷载,并求出
在单位荷载作用下给定位移的支座处的反力
虚功原理
W =U
可写为
位移状态 位移状态

结构力学的拱的受力与挠度分析解析

结构力学的拱的受力与挠度分析解析

结构力学的拱的受力与挠度分析解析结构力学是一个研究物体在外力作用下的力学性质的学科,拱是一种重要的结构形式。

在本文中,我们将探讨拱的受力与挠度的分析解析。

一、拱的基本概念和受力特点拱是由一定数量的弧形构件组成的结构体系,具有以下几个基本概念和受力特点:1. 拱脚:拱脚指的是拱的两个支点或固定端。

2. 拱顶:拱顶是拱的上部中点,也是受力最大的位置。

3. 拱轴线:拱轴线是拱的中心线,通过拱顶、拱脚和拱的几何形状。

4. 受力特点:拱的受力特点是主要由轴力和弯矩组成,其中轴力负责承受垂直于拱轴线的力,而弯矩则负责承受沿拱轴线的力。

二、受力分析解析对于一个静定拱,其受力分析可以通过以下几个步骤来实现:1. 选择合适的坐标系:根据拱的几何形状和受力情况,选择合适的坐标系,通常选择拱轴线作为x轴,垂直于拱轴线的方向作为y轴。

2. 建立平衡方程:根据受力平衡条件,建立拱在x和y方向上的平衡方程,考虑到拱的对称性,通常只需要考虑一半的力学模型。

3. 解析受力分布:通过求解平衡方程,可以得到拱轴线上的轴力和弯矩的分布情况,这对于进一步分析拱结构的受力特点非常重要。

4. 弹性分析:对于非静定的拱结构,需要进行弹性分析,考虑拱的材料性质和几何形状等因素,通过弹性力学理论,可以计算出拱的挠度和变形情况。

三、挠度分析解析拱的挠度分析是结构力学中一个重要的问题,可以通过以下几个方法进行解析:1. 弦索法:弦索法是一种常用的解析方法,根据拱的轴线、支点位置和受力条件,假设拱为一根从支点悬挂的弦或悬链。

通过求解拉力分布和挠度方程,可以得到拱的挠度情况。

2. 力学方程法:利用弯曲方程和力学平衡条件建立拱的挠度方程,再通过求解微分方程,可以得到拱的挠度函数和挠度分布。

3. 有限差分法:有限差分法是一种数值解法,将拱的轴线划分为若干个小段,通过差分近似的方式离散挠度方程,再通过迭代计算,得到拱的挠度分布。

这些方法并非穷尽拱的受力与挠度分析解析的所有途径,但是对于常见拱结构而言,它们是非常有效的工具。

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第4章 静定拱【圣才出品】

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第4章 静定拱【圣才出品】

第4章 静定拱4.1 复习笔记【知识框架】【重点难点归纳】一、拱的基本概念及特点 ★★表4-1-1 拱的基本概念及特点表4-1-2 有拉杆和无拉杆三铰拱的区别与联系二、三铰拱的计算 ★★★★★1.支座反力的计算(见表4-1-3)表4-1-3 支座反力的计算2.内力的计算(见表4-1-4)表4-1-4 三铰拱的内力计算三、三铰拱的合理拱轴线(见表4-1-5) ★★★表4-1-5 三铰拱的合理拱轴线4.2 课后习题详解复习思考题1.拱的受力情况和内力计算与梁和刚架有何异同?答:(1)拱与梁的受力情况和内力计算的区别①约束反力方面,拱在竖向荷载作用下会产生水平反力(推力),而梁在竖向荷载作用下不会产生水平反力(推力);②内力分布方面,由于水平推力的存在,拱的弯矩常比跨度、荷载相同的梁的弯矩小得多,使得拱截面上的应力分布较为均匀;③内力分析方法方面,若只有竖向荷载时,梁只需进行简单的整体分析即可求解,而拱由于水平力的存在,需要整体分析与局部分析相结合。

(2)拱与刚架的受力情况和内力计算的异同①内力分析方法方面,拱与刚架的受力情况和内力计算的特点和所应用方法基本一致,例如三铰刚架也属于拱式结构;②拱的轴线是曲线,刚架杆的轴线是直线,在应用平衡条件计算内力时,拱仍然取投2.在非竖向荷载作用下怎样计算三铰拱的反力和内力?能否使用式(4-1)和(4-2)?答:(1)对于三铰拱承受非竖向荷载的情况,可将非竖向荷载分解为水平荷载和竖向荷载。

(2)仍然可以应用式(4-1)和(4-2),将水平反力加上非竖向荷载水平方向上的分量一起代入公式中进行求解。

(4-1)o AV AV o BV BV o c H F F F F M F f ⎫⎪=⎪⎪=⎬⎪⎪=⎪⎭cos sin (4-2)sin cos o H o S S H o N S H M M F y F F F F F F ϕϕϕϕ⎫=-⎪⎪=-⎬⎪=+⎪⎭3.什么是合理拱轴线?试绘出图4-2-1各荷载作用下三铰拱的合理拱轴线形状。

《结构力学》第四章 静定结构的位移计算 (3)

《结构力学》第四章 静定结构的位移计算  (3)
A M k M P ds
B EI
2
R 1
cos
( FP R
sin
)
Rd
0
EI
d
FPR3
2EI
FPk 1
A
B Bx 2 By 2
B kP
B
A M k M P ds B EI
2
(1)
(FPR sin
)
Rd
0
EI
R
O
FP R2 (

EI
(1)梁与刚架
三、结构的外力虚功
作用在结构上的外力可能是单个的集中力、力 偶、均布力,也可能是一个复杂的力系,为了 书写方便,通常将外力系的总虚功记为:
W = Fk × km
其中,Fk为作功的力或力系,称为广义力; km为广义力作功的位移,称为广义位移。 下面讨论几种常见广义力的虚功。
1) 集中力的虚功
Pk
k
M
4EIk
GAl 2
kP
若截面为矩形,则:A bh, I bh3 /12,k 6 l 1, 2
h / l 1 , 10
h/l 1 , 15
则:
Q kP
( h)2
Q
M kP
l
kP 25% kMP
对于粗短杆来说,剪 切变形产生的位移不可忽
Q
kP 1%
1
m
ds
第i根杆件静力状态上的力在位移状态的位移上所 作的虚功:
Vi
s FNk
mds
s FQk mds
s Mk
1
m
ds
整个杆件结构各个截面上的内力在位移状态的位 移上的所作的总虚功:
N
N
N

结构力学第四章 静定结构的影响线

结构力学第四章 静定结构的影响线
327243用机动法作静定梁的影响线二采用机动法作影响线的概念和步骤拟求支座b反力frb的影响线撤去b支杆代以未知量z体系成为一个自由度的机构加虚位移写出虚功方程dp向下为正dz与未知量z方向一致为正fp1移动时dp随x的位置变化dz不变ablfp1abcxabzfp1xdpdz0ppfzzzzpxxzzp1337243用机动法作静定梁的影响线二采用机动法作影响线的概念和步骤1函数x函数x确定影响线各竖距的数值将虚位移dp图除以dz或在虚位移图中设dz1即可从形状和数值上确定z的影响线ablfp1abcxabzdz1fp1xdpdzxxzzpzp表示z的影响线表示荷载作用点的竖向位移虚位移关系图347243用机动法作静定梁的影响线二采用机动法作影响线的概念和步骤机动法作静定内力或支座反力的影响线的步骤如下1撤去与z相应的约束代之以未知力z2使体系沿z正方向发生位移作出荷载作用点的竖向位移图dp图由此确定影响线的轮廓
第四章 静定结构的影响线
Last Edit: 2009.8.8
本章主要内容:
1 影响线的概念;
2 用静力法作静定梁的影响线;
3 用机动法作静定梁的影响线; 4 影响线的应用; 5 简支梁的包络图和绝对最大弯矩。 课后作业
2/72
4-1 影响线的概念
3/72
4-1 影响线的概念
一、移动荷载对结构的作用 固定荷载:荷载的位置是固定的
5/72
4-1 影响线的概念
二、解决移动荷载作用问题的途径 采用叠加原理(无论有几个FP)
A B
进一步采用单位力
—— 一个方向保持不变的单位荷载 FP=l在结构上移动时,对结构中某一 量值(反力,内力等)所产生的影响。
FP1 A
FA
FP2 B
x

结构力学4静定结构的位移计算习题解答

结构力学4静定结构的位移计算习题解答

第4章 静定结构的位移计算习题解答习题 是非判定题(1) 变形体虚功原理仅适用于弹性体系,不适用于非弹性体系。

( ) (2) 虚功原理中的力状态和位移状态都是虚设的。

( )(3) 功的互等定理仅适用于线弹性体系,不适用于非线弹性体系。

( ) (4) 反力互等定理仅适用于超静定结构,不适用于静定结构。

( ) (5) 关于静定结构,有变形就必然有内力。

( ) (6) 关于静定结构,有位移就必然有变形。

( )(7) 习题(7)图所示体系中各杆EA 相同,那么两图中C 点的水平位移相等。

( ) (8) M P 图,M 图如习题(8)图所示,EI =常数。

以下图乘结果是正确的:4)832(12ll ql EI ⨯⨯⨯ ( )(9) M P 图、M 图如习题(9)图所示,以下图乘结果是正确的:033202201111)(1y A EI y A y A EI ++ ( )(10) 习题(10)图所示结构的两个平稳状态中,有一个为温度转变,现在功的互等定理不成立。

( )(a)(b)习题 (7)图图(b)M图(a)M P 81qM 图(b)P M 图(a)习题 (8)图 习题 (9)图(a)P习题 (10)图【解】(1)错误。

变形体虚功原理适用于弹性和非弹性的所有体系。

(2)错误。

只有一个状态是虚设的。

(3)正确。

(4)错误。

反力互等定理适用于线弹性的静定和超静定结构。

(5)错误。

譬如静定结构在温度转变作用下,有变形但没有内力。

(6)错误。

譬如静定结构在支座移动作用下,有位移但没有变形。

(7)正确。

由桁架的位移计算公式可知。

(8)错误。

由于取0y 的M 图为折线图,应分段图乘。

(9)正确。

(10)正确。

习题 填空题(1) 习题(1)图所示刚架,由于支座B 下沉∆所引发D 点的水平位移∆D H =______。

(2) 虚功原理有两种不同的应用形式,即_______原理和_______原理。

其中,用于求位移的是_______原理。

4 静定拱

4 静定拱

结构力学第四章 静定拱§4-1 概 述§4-2 三铰拱的数值解§4-3 三铰拱的合理拱轴线杆轴线为曲线,在竖向荷载拱式结构的特点:作用下会产生水平反力(称为推力)。

拱式结构又称为推力结构。

梁式结构在竖向荷载作用下是不会产生推力的。

BBACABC(c)BCAB有拉杆的三铰拱 两铰拱曲梁三铰拱各部分名称高跨比f/l 是拱的一个重要的几何参数。

工程实际中,高跨比在l ~1/10之间,变化的范围很大。

跨度矢高拱趾拱趾拱顶f l 拱轴线拱顶:拱的最高点。

拱趾: 支座处。

跨度:两支座之间的水平距离, 用l 表示。

矢高:拱顶到两拱趾间联线的竖向距离,用f 表示。

拱与其同跨度同荷载的简支梁相比其弯矩要小得多,所以拱结构适用于大跨度的建筑物。

它广泛地应用房屋桥梁和水工建筑物中。

由于推力的存在它要求拱的支座必须设计得足够的牢固,这是采用拱的结构形式时必须注意的。

一、三铰拱的反力和内力计算。

1.支座反力计算(与三铰刚架反力的求法类似)。

代梁代梁:同跨度、同荷载的简支梁,其反力、内力记为、 、 、0V AFV BF 0M 0S F 三铰拱BF F F F fFFF Ayxl/x KC2l/2V AH BH AV BF 1F 2F 3BACF a a a 123F K V AV BH H H F F F B A ==考虑整体平衡0V 332211=−++l F a F a F a F B ()()()[]332211V 1a l F a l F a l F lF A−+−+−=考虑C 铰左侧部分平衡 ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−⋅=2211H 2221a l F a l F l F fF yA 由∑X =0,得由∑M A =0()332211V 1a F a F a F lF B++=得由∑M B =0,得由∑M C =0,得B F F F F fFFF Ayx l/x K C2l/2V AH BH AV B与代梁相比较有:⎪⎪⎪⎭⎪⎪⎪⎬⎫===f M F F F F F C B B AA 0H 0V V 0V V 可见:三铰拱的竖向支座反力就等于代梁的反力; 水平推力就等于代梁C 截面的弯矩除以矢高; 拱的矢高对水平推力影响很大(矢高愈小即拱的形状愈扁平推力愈大)。

第四章三铰拱

第四章三铰拱

y
P1 K
P2
φK
MK [FAV xK P1( xK a1 )] FH yK
M
0 K
FA0V xK
P1(xK
a1 )
FAH A FAV
yK f
x xK
P1
MK
K
FNK
B FBV
FBH MK M0K FH yK (3-3)
3、剪力计算—使隔离体顺时针转动为正 FSK FAV cosφK P1cosφK FHsinφK
1 l
(P1a1
P2a2 )
FAH A
xK
yK f
B
请问:有水平x荷载,
或铰FAV Cl1不在顶l2部,F或BV
是斜拱三铰,右拱计l边算的简图结论 还是正确的吗?
FBH
FAV FA0y
FBV
FB0y
(3-1)
FX 0: FAH FBH FH
MC FAVl1 P1(l1 a1)水 F平H推f 力 0FH
x
44 122
312
3
3m
FBV
FBV
26389 12
9kN
FH
M
C
f
11 6 2 6 3 4
7.5kN
M2
M
2
FH
y2
113
231.5 7.53
1.5kN m
tg 2
dy dx
4f x3 l
1
2x l
x3
44 12
1
2123
0.667
FS 2
FS
2
cos2
FH
sin 2
FSK
(FAV P1 )cosφK FHsinφK
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l/2
l
l
FVA 2 FHA f FP1 4 0,
FHA
1 f
l
l
(FVA 2 FP1 4)
M
0 C
f
().
FHB
M
0 C
f
().
上式中,M
0 C
为代梁C截面的弯矩。
将本例题数据代入得:
MC0
FV0A
l 2
FP1
l 4
12.5 8 15 4
40kN
m.
FHA
MC0 f
40 4
两铰拱 超静定拱
无铰拱 静定拱
高差h
斜拱
由于拱式结构具有可以用抗压强度高,抗拉强度 底的材料跨越大空间的优越性,从古至今被广泛应用 于建筑工程领域。
在桥梁工程,水工工程,房屋工程,隧道工程,国 防工程等大跨结构中,经常采用这种结构形式。
采用拱结构时,对地基基础的要求很高。基础必 须足够坚固,提供足够的地基反力。
10kN (),
FHB 10kN ().
小结:
1)
水平推力与矢高
f 成反比。FHA FHB
MC0 f
.
2) 支座反力FVA、FVB、FHA、FHB与拱轴形状
无关,只与三个铰A、B、C及荷载的相对位置
和荷载的大小有关。
2. 弯矩计算公式
求任意截面D的弯矩。由AD段隔离体可得:
MD 0
d1
M D FVA xD FHA yD FP1 d1
MJ 0, MJ 7.54 10 3 30 30 0.
3. 求FS、FN 的计算公式
拱轴任意截面D切线与水平线夹角为φ。
相应代梁中,FS0D设为正方向。
FS0D FV0A FP1 ,
FSD FS0D cos FH sin ,
FHA A
FND FS0D sin FH cos . FVA
xK=4m
y'
44 162
(16
2
4)
1 2
FºSK左=12.5kN
5
1
2
FºSK右=-2.5kN
15kN
A
K左
A
K右
12.5kN
12.5kN
FºSK左=12.5kN
FºSK右=-2.5kN
(FH 10kN ,
F0 SK 左
12.5kN ,
F0 SK 右
2.5kN )
(sin 0.447, cos 0.894)
为带拉杆的三铰拱。
FHA A
(拱脚)
FVA
A
FP C(拱顶) f (矢高)
l (跨度) C(拱顶) f (矢高)
(拉杆)
l (跨度)
B FHA
(拱脚)
FVB
B
通常高跨比 f l 在1~1/10之间变化,f l 的值 对内力有很大影响。
二. 三铰拱内力计算的数解法
下面以图示三铰拱为例加以说明。
y FHA A
MºD FºQD 代梁
下面求K、J截面的弯矩MK和MJ。
15kN
5kN
MK K
J MJ
10kN A 4m yK=3m yJ=3m 4m B10kN
12.5kN
7.5kN
求MK
44 yk 162 4(16 4) 3m.
MK 0, MK 12.54 10 3 20kN m(下拉).
求MJ yJ 3m
FV0A
FVA
1 16
(FP1
12
FP 2
4)
1 16
(15 12
5 4)
200 16 12.5kN ()。
Fy 0,
FV0B FVB 20 12.5 7.5kN()。
下面求支座的水平推力: 考虑拱AC部分平衡:
FP1=15kN
K
FHA A
yk
C f=4m
MC 0
FVA 4m 4m
J右
B
FºSJ右=-7.5kN 7.5kN
5
-1
2
sin 0.447 cos 0.894
FSJ右
F0 SJ 右
cos
FH
sin
7.5
0.894
10 (0.447)
6.71 4.47 2.24kN .
FNJ右 FQ0J右 sin FH cos (7.5) (0.447) 10 0.894
一. 概述
第四章 静定拱
FP
1.拱的定义
拱--杆件的轴线为 曲线,在竖向荷载 作用下会产生水平 推力的结构。
拱 这是拱结构吗?
FP
杆轴线为曲线在竖 向荷载作用下不会 产生水平反力。
曲梁
2.拱的受力特点
FP
曲梁
FP
拱比梁中的弯矩要小
FP

FP
3.拱的分类
静定拱
三铰拱
拉杆
静定拱
拉杆拱 静定拱
超静定拱
(FVA xD FP1 d1 ) FHA yD
(FV0A xD FP1
M
0 D
FHA
yD
.
d1 )
FHA
yD
FHA A
FVA
由上式可见,因为有推力
存在,三铰拱任一截面之 弯矩小于代梁中相应截面
A
的弯矩,即MD <MºD 。
FºVA
FP1 MD FND D
xD yD FQD
FP1 d1 D
2.5 0.894
10
0.447
2.24 4.47 6.71kN .
FNK右
F0 SK 右
sin
FH
cos
(2.5) 0.447
10 0.894
1.12 8.94 7.82kN (压).

求FSJ右、FNJ右 。
xJ=12m
y
'
44 162
(16
2 12)
1 2
FºSJ右=-7.5kN
FP1=15kN
FP2=5kN
C
K
J
yk f=4m yJ
B FHB x
FVA 4m
4m
l/2
4m
4m FVB
l/2
FP1=15kN
FP2=5kN
A
C
B 代梁
K
J
FV0A 4m
4m
4m
4m
FV0B
l/2
l/2
解:
拱轴曲线的方程为:
y=
4f l2
x(l x)。
1. 支座反力
考虑整体平衡: MB 0,
FSK左
F0 SK 左
cos
FH
sin
12.5 0.894 10 0.447
11.18 4.47 6.71kN .
FNK左 FS0K左 sin FH cos 12.5 0.447 10 0.894
5.59 8.94 14.53kN (压).
FSK右
F0 SK 右
cos
FH
sin
3.35 8.94 12.29kN (压).
FP1 D φ FND
φ
FH
FS0D
FSD
小结:
FP1
1) 左半拱>0,右半拱 <0。 A
tg y ' 4 f (l 2x) a FV0A
l2
b
代梁
D
FS0D
a2+b2 a
b
2) FºSD是代梁截面D的剪力,设为正方向。
故FºSD可能大于零、等于零或小于零。
下面用上述公式求FSK、FNK。
下面列举工程实例给以说明:
三铰拱的构造特征:杆轴线通常为曲线,三个刚 片(包括地基基础)用不在同一直线上的三个铰两两 相连而组成。
三铰拱的受力特征:在竖向荷载作用下,拱脚处
产生很大的水平推力;因此拱轴任一截面的轴力FN比
较大,弯矩比较小。 当基础薄弱时,常用拉杆来承受其水平推力,成
相关文档
最新文档