人教版平行线的判定条件
人教版七年级数学课件《平行线的判定》

B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时
∥
CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.
人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )
平行线的判定5种方法

1.同位角相等,两条线平行。
2.内错角相等,两条线平行。
3.同旁内角互补,两条线平行。
4.经过直线外一点,有且只有一条直线与已知直线平行。
5.如果两条直线都与第三条直线直线平行,那么这两条直线也互相平行。
平行线的判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(内错角相等,两直线平行)
(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(同旁内角互补,两直线平行)
(3)两直线都与第三条直线平行,那么这两条直线也互相平行。
(若直线a平行于直线b,直线b平行于直线c,那么直线a也平行于直线c)(等量代换)。
新人教版七年级数学下册平行线及判定

③过一点可以而且只可以画一条直线与已知直线
平行。
(╳)
D 2、用符号“∥”表示图中平行四
C
边形的两组对边分别平行。
AB∥ CD,AD∥ BC。 A
B
巩固练习
下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交, 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
5.2 平行线及其判定 5.2.2 平行线的判定
平行线的画法
一放 二靠 三移 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗?
平行线的判定定理1: 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
C
相交的两
Hale Waihona Puke 条直线。 abB
直线AB平行
AB D
CD 于直线CD
a b 直线a平行
于直线b
平面内的两条直线除平行 外还有什么位置关系?
同一平面内的两条不重 合的直线的位置关系只有两种:
相交或平行
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。
(╳)
②在同一平面内,两条不相交的线段是平行线。(╳)
E
A
B
4
C
7
D
F
两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.
简单地说:同旁内角互补,两直线平行.
判定两条直线平行的方法
文字叙述
符号语言
5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.
初中数学 平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
5.2.2平行线的判定(课件)七年级数学下册(人教版)

AB
A
D
1
B
C
人教版数学七年级下册
谢谢聆听
∴∠1=∠2(同角的补角相等)
∴a∥b(同位角相等,两直线平行)
1
3 4
a
2
b
探究新知
人教版数学七年级下册
判定两条直线平行的方法:
判定方法3:两条直线被第三条直线所截,如果同旁内角互补,
那么这两条直线平行.
1
a
3 4
简单说成:同旁内角互补,两直线平行.
2
符号语言表示:∵∠2+∠4=180°(已知)
人教版数学七年级下册
课后作业
人教版数学七年级下册
2.如图:
如果∠1=∠D,那么______∥________;
AD
BC
如果∠1=∠B,那么______∥________;
CD
AB
如果∠A+∠B=180°,那么______∥________;
BC
AD
如果∠A+∠D=180°,那么______∥________.
人教版数学七年级下册
2.如图:
AD
BC
如果∠B=∠1,则可得____//___
同位角相等,两直线平行
根据是_____________________
AB
CD
如果∠D=∠1,则可得到____//___
B
内错角相等,两直线平行
根据是_______________________
A
1
D
C
巩固练习
人教版数学七年级下册
但是,由于直线无限延伸,检验它们是否相交有困难,
所以难以直接根据两条直线是否相交来判定是否平行,那么
人教版七年级数学教案:5.2平行线及其判定

在今天的课堂中,我尝试了多种教学方法,希望让学生更好地理解和掌握平行线及其判定的知识。首先,通过日常生活中的实例导入新课,我发现同学们对此产生了浓厚的兴趣,这为后续的学习奠定了良好的基础。但在讲授过程中,我也发角、内错角等概念上存在一定的困惑。
此外,在学生小组讨论环节,我注意到有些小组在讨论主题上稍显偏离,没有完全聚焦在平行线的实际应用上。在今后的教学中,我应更加注重引导学生围绕主题展开讨论,提高讨论的针对性和实效性。
在总结回顾环节,我发现同学们对本节课的知识点有了较为全面的掌握,但仍有个别同学存在疑问。为此,我计划在课后进行个别辅导,帮助他们消除困惑,确保每个人都能跟上教学进度。
2.教学难点
a.平行线判定方法的推理过程;
-对于同位角相等、内错角相等、同旁内角互补等判定方法,学生可能难以理解其中的逻辑关系,需要教师通过具体实例和图示进行详细讲解。
b.画平行线的实际操作;
-在实际操作过程中,学生可能会出现画线不准确、方法不熟练等问题,需要教师耐心指导,反复练习,帮助学生掌握正确的方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法和在实际中的应用。通过实践活动和小组讨论,我们加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法和画法这两个重点。对于难点部分,如同位角、内错角等概念,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七 年级数学导学案课题 平行线判定方法一、二
主备人
课时
时间
学习
目标
1、通过用直尺和三角尺画平行线的方法理解平行线的判定定理1.
2、能用平行线的判定定理1来推理判定2.
3、学会推理的方法. 重点 能进行一些简单的推理 难点 简单推理能力的培养 导学过程 师生活动
一、情境导入
同位角: 内错角: 同旁内角: 二、导学
(一)、自学13页思考及14页第一段:
判定方法1:同位角 ,两直线平行。
51∠=∠
∴ a ∥ b( 同位角相等,
反馈练习: 两直线平行)
1、在同一平面内的三条直线满足a ⊥b , a ⊥c,
则b 与c 的位置关系是 。
2、下列推理错误的是( ) 4 5
A 、 ∠2=∠5 ∴ a ∥ b 1 4
B 、 ∠3=∠4 ∴ a ∥ b
C 、 ∠1=∠3 ∴ c ∥ d 3 2 3
D 、 ∠2=∠3 ∴ c ∥ d
(二)、自学14页思考:
判定方法2: 相等,两直线平行。
三、精讲点拔
1. 如图,直线a//b 的条件是( )。
A. ∠1=∠3
B. ∠2=∠3
a
b
c 321
a
b
c 87654
321
c d
a
b
C. ∠1=∠2
D. ∠1+∠2=180°
2.已知: ∠3=∠4, 则( )。
A.DC ∥AB
B.AD ∥BC 且AB ∥DC
C.都不平行
D.AD ∥BC
3.如图,若∠A 与( )互补,可判定AB ∥CD 。
A.∠B
B.∠C
C.∠D
D.以上都不是
4、如图:若1∠与2∠互补,2∠与4∠互补,则( ) A 、d ∥c B 、 a ∥b C 、 a ∥ c D 、 b ∥c
四、学习小结
总结直线平行的条件 学习体会:
1、 本节课你有哪些收获? 2你还有哪些
学后反思
达标检测
五、当堂检测(拓展延伸)
4
32
1c
b a
1如图,直线a 、b 被直线c 所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;
(4)∠4=∠7,其中能判定a ∥b 的条件的序号是( )。
A .(1)、(2)
B .(1)、(3)
C .(1)、(4)
D .(3)、(4)
2.如图,下列条件中,能判断直线1l //2
l 的是( )。
A .∠2=∠1
B .∠1=∠4
C .∠2=∠4
D .∠4+∠2=180° 3.如图,不能推出a ∥b 的条件是( )。
A .∠1=∠3 B .∠2=∠4 C .∠2=∠3 D .∠2+∠3=180° 4. 如图,下列推导正确的是( )。
A. 因为∠1=∠3,所以c//d
B. 因为∠1=∠4,所以a//b
C. 因为∠1+∠2=180°,所以c//d
D. 因为∠2=∠4,所以a//b 5、如图:如果21∠=∠,那么 ∥ ; 如果︒=∠+∠18042,那么 ∥ ; 如果0
18031=∠+∠,那么 ∥ 。
课后作业
1、下列条件不能判定AB ∥CD 的是( )
4
32
1c
b a
543
2
1E
A D B
A 、41∠=∠
B 、32∠=∠
C 、B ∠=∠5
D 、0180=∠+∠D BAD
2.如果直线a ∥b ,b ∥c ,那么a ∥c ,这个推理的依据是( )。
A.等量代换 B.平行公理
C.同位角相等,两直线平行
D.平行于同一条直线的两条直线互相平行 3. 已知a 、b 、c 是同一平面的三条直线,则下列说法错误的是( )。
A. 若a ∥b ,b ⊥c ,则a ⊥c 。
B. 若a ∥b ,b ∥c ,则a ∥c 。
C. 若a ⊥b ,b ⊥c ,则a ⊥c 。
D. 若a ⊥b ,b ⊥c ,则a ∥c 。
4. 如图,下列推论及所注理由不正确的是( )。
A. 因为∠1=∠C ,所以DE ∥BC 。
(同位角相等,两直线平行)
B. 因为∠2=∠3,所以DE ∥BC 。
(同位角相等,两直线平行)
C. 因为∠2=∠3,所以DE ∥BC 。
(内错角相等,两直线平行)
D. 因为∠DEC+∠C =180°,所以DE ∥BC 。
(同旁内角互补,两直线平行) 选作:
1.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )。
A .第一次向左拐40°第二次向右拐40°
B .第一次向右拐40°第二次向左拐140°
C .第一次向右拐40°第二次向右拐140°
D .第一次向左拐40°第二次向左拐140° 2.如图,∠1=47°,∠2=133°,∠D=47°,那么BC 与D
E 平行吗?AB 与CD 呢?为什么?。