19.1.1 变量与函数 教案

合集下载

数学八年级下册第十九章一次函数19.1函数19.1.1变量与函数教案

数学八年级下册第十九章一次函数19.1函数19.1.1变量与函数教案

19.1.1 变量与函数第1课时常量与变量教学目标知识与技能:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。

初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。

过程与方法:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。

情感态度与价值观:从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。

学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。

重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念难点:怎样理解“唯一对应”教学过程:一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。

例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。

再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。

这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。

二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。

A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。

2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。

人教版八年级下册19.1.1变量与函数教案[精品文档]

人教版八年级下册19.1.1变量与函数教案[精品文档]

《变量与函数》教案【教学目标】1.知识与技能(1)了解变量与常量的意义;(2)体会运动变化过程中的数量变化.2.过程与方法使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。

3.情感态度和价值观渗透事物是运动的,运动是有规律的辩证思想。

【教学重点】了解常量与变量的意义。

【教学难点】常量与变量的确定及关系。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件。

【课时安排】1课时【教学过程】一、情景导入【过渡】在我们生活的世界中,所有的事物都是在不停的变化,行星在宇宙中的位置随时间而变化;气温随海拔而变化;火箭的高度随时间而变化,雄鹰的飞翔也会变化。

在我们周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在。

课件展示图片。

【过渡】对于这些变化,我们从最基本的概念来进行认识。

二、新课教学1.变量与常量【过渡】大家先来思考一下几个问题。

(1)汽车以60 km/h 的速度匀速行驶,行驶时间为t h,行驶路程为s km.(2)每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房收入各多少元?(3)你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径分别为10 cm,20 cm,30 cm时,圆的面积s分别为多少?s的值随r的值的变化而变化吗?(4)用10 m长的绳子围一个矩形.当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?分别指出问题中的变化的量及不变的量。

【过渡】在刚刚的几个问题中,我们知道在事物变化的过程中,有些量的变化的,而有些量则是固定的数值,保持不变。

在数学里,我们把这些变化的量称为变量,不变的量称为常量。

变量:在一个变化过程中,数值发生变化的量为变量。

常量:在一个变化过程中,数值始终不变的量为常量。

【练习】课本P71练习题,说出变量及常量。

第一课时 19.1.1 变量与函数教学设计

第一课时  19.1.1 变量与函数教学设计

第十九章一次函数19.1 函数第一课时19.1.1 变量与函数课件说明:本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义,进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.学习目标:1.了解变量与常量的意义;2.体会运动变化过程中的数量变化.3.从典型实例中抽象概括出函数的概念,了解函数的概念.学习重点:1.了解变量与常量的意义,充分体会运动变化过程中量的变化.2.概括并理解函数概念中的单值对应关系.一、新课引入二、学习目标:1、了解变量的概念,会区别常量与变量2、理解变化与对应的内涵三、研读课文认真阅读课本第71页的内容,完成下面练习并体验知识点的形成过程.知识点一变量与常量三、研读课文1、汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h,填写表19-1,s的值随t 的值的变化而变化吗?表19-1(1)请同学们根据题意填写下表:(2)在以上这个过程中,变化的是_____________,不变化的量是______.(3)试用含t的式子表示s 是_______.2、每张电影票的售价为10元,如果第一场售出150张票,第二场售出205张票,第三场售出310 张票(1)第一场电影的票房收入_____元;第二场电影的票房收入_____元;第三场电影的票房收入_____元.(2) 在以上这个过程中,变化的______________ 不变化的量是___________.(3) 设一场电影售出票x张,票房收入为y元,怎样用含x的式子表示y?(4)y的值随x的值的变化而变化吗?3、你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径分别为10 cm,20 cm,30 cm时,圆的面积s分别为多少?s的值随r的值的变化而变化吗?4、用10 m长的绳子围一个矩形.当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?思考: 上面的问题,你能说出哪些量的数值是变化的?哪些量的数值是始终不变的? 变化的量:时间 t ,路程 s ; 售出票数x , 票房收入y ; 圆的半径r,圆的面积s ; 矩形的一边长x ,矩形的邻边长y 。

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
2、每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;

人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。

学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。

本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。

二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。

但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。

因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。

三. 教学目标1.理解变量的概念,掌握常量与变量的区别。

2.理解函数的定义,掌握函数的表示方法。

3.能够运用变量和函数的知识解决实际问题。

四. 教学重难点1.重点:变量、函数的概念及其表示方法。

2.难点:函数概念的理解,函数表示方法的应用。

五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。

2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。

3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。

六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。

2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。

通过观察、讨论,让学生初步理解变量概念。

2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。

接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。

3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。

人教版八年级下第19章一次函数19.1.1变量与函数教案

人教版八年级下第19章一次函数19.1.1变量与函数教案
2.通过对变量、函数概念的理解,发展学生的抽象思维和逻辑推理能力。
3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。

人教版八年级数学下册 第19章 19.1.1 变量与函数 教案

人教版八年级数学下册 第19章 19.1.1  变量与函数 教案

19.1.1 变量与函数(第1课时)教学目标知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.过程与方法1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.2.逐步感知变量间的关系.情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.认识变量、常量2.用式子表示变量间关系教学难点用含有一个变量的式子表示另一个变量教具准备多媒体课件教学过程一图片欣赏开头语:为了更深刻地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.二、问题探究问题一:汽车以60千米/小时的速度匀速行驶,行驶路程为s千米,行驶时间为t小时.12. 3试用含t的式子表示s, s=________,这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•1请同学们根据题意得三场电影的票房收入为:早场票房收入= 10×150 = 1500 (元)午场票房收入= 10×205 = 2050 (元)晚场票房收入= 10×310 = 3100 (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3用含x的式子表示y, y=______ ,这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:水中的涟漪, 圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10cm 、20cm 、30cm 时,圆的面积s 分别为多少?1请同学们根据题意得当半径r=10cm 时,面积s=3.14×102当半径r=20cm 时,面积s=3.14×202当半径r=30cm 时,面积s=3.14×3022在以上这个过程中,变化的量是_____________.不变化的量是__________. 3试用含r 的式子表示s .s=_________,这个问题反映了___ _ 随_ __的变化过程问题四:用10m 长的绳子围成矩形,当矩形的一边长x 分别为 3m ,3.5m,4m 时,邻边长y 是多少?1 请同学们根据题意得当矩形的长为3时, y=(10-2×3)÷2 = 2当矩形的长为3.5时, y=(10-2×3.5)÷2 = 1.5当矩形的长为4时, y=(10-2×4)÷2 = 12在以上这个过程中,变化的量是_____________.不变化的量是__________. 3试用含x 的式子表示y . y=__________________,这个问题反映了矩形的___ _ 随_ __的变化过程.三、归纳总结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.1 变量与函数一、教学目标1.核心素养:通过常量、变量学习,培养学生的符号意识,加强推理能力.经历函数概念的抽象概括过程,体会函数的模型思想,以培养学生数学抽象、直观想象.2.学习目标(1)从具体的事例中找出常量、变量.(2)理解常量、变量的相对性.(3)探索具体问题中的数量关系和变化规律,理解函数的概念以及自变量的意义.(4)会求函数自变量的取值范围.(5)感受数形结合的数学思想方法.3.学习重点(1).常量、变量的意义.(2).函数的概念,会求函数自变量的取值范围.4.学习难点(1).常量、变量的相对性的理解(2).求实际问题中自变量的取值范围.二、教学设计(一)课前设计1.预习任务任务1:阅读教材P71----P72,了解变量与常量是如何规定的?在一个变化过程中,___________称为变量,___________为常量.任务2:阅读教材P73----P74,函数是如何定义的?函数的本质是什么?函数是刻画变量之间的数学模型。

函数是指在一个变化过程中,涉及到个变量,对于一个变量的每一个确定的值,另一个变量都有确定的值与之对应。

所以,函数的定义.任务3:怎样求函数自变量的取值范围?函数值呢?结论:用数学式子表示的函数,自变量的取值范围应使式子有意义,即注意以下几点:① 若解析式是整式,则自变量取 . ② 若解析式是分式,则自变量的取值 .③ 若解析式是二次根式,则自变量的取值 . 注意实际问题中的自变量的取值范围:(1)应符合实际意义;(2)应使所列数学式子有意义.结论:求函数值的方法 .2.预习自测1.某种报纸每份2元,购买x 份此种报纸共需y 元,则y =2x 中的常量是 ,变量是 .2.下列图象中表示 y 是x 的函数的( )A. B. C. D.3.在函数11-=x y 错误!未找到引用源。

中,自变量x 的取值范围是 ( ) A. x ≥1 B .x ≠1 C. x ≥-1且 x ≠1 D.全体实数 预习自测1.2;x,y 2.C 3.B(二)课堂设计1.知识回顾(1)基本等量: 路程=速度•时间 矩形的周长=2(长+宽)圆面积公式:2r S π=(2)分式的分母不能为0.(3)二次根式的被开方数是非负数。

2.问题探究问题探究一 如何确定关系式的常量、变量?活动一 常量与变量 若球体的体积为V ,半径为R ,则公式334R V π= ,其中的变量是 ,常量是 .解析:判定常量与变量的关键是判断一个变化过程中,哪些量的数值发生了变化,显然π34是常量,V 与R 是变量,3R 的指数3与变量和常量无关. 活动二 常量、变量的相对性▲设路程为 s ,速度为 v ,时间为 t ,在关系式 s = vt 中,下列说法正确的是( )A .当 s 一定时, v 是常量, t 是变量B .当 v 一定时, s 是变量, t 是常量C .当 t 一定时, t 是常量, s 、 v 是变量D .当 t 一定时, v 是变量, s 是常量解析:常量与变量是相对于变化过程而言的,可以相互转化.故本题选C . 问题探究二 怎样判定一个关系式是否是函数?★活动一 函数实质 某一个变化过程中,有两个变量,它们是互相联系的,当其中一个变量取一定的值时,另一个变量就 ,函数的实质是 .活动二 判定函数 下列式子中,不是函数的是( )A. x y =B. 2x y =C. )0(≥=x x yD.)2(2≥-±=x x y解析:函数的概念的题目要紧扣定义,函数值必须是唯一的,否则不是函数.选D.问题探究三 如何求函数自变量的取值范围?★▲活动一 解读“有意义”函数自变量的取值范围是指使函数的关系式有意义的自变量的取值.(1)当函数的解析式是整式时,自变量的取值范围是任意实数;(2)当函数的解析式是分式时,自变量的取值要使分母不为0;(3)当函数的解析式是二次根式时,自变量必须取非负数;(4)对于实际问题中的函数,除使解析式有意义外,还要使实际问题有意义.▲活动二 典例分析 应用举例等腰三角形的腰长为x ,底边长为y,周长为10,写出y 与x 的函数关系式,并求x 的取值范围.解析:由三角形的周长得出函数关系式,显然是整式的形式x y 210-=,但作为三角形的的边x , y,满足是正数,且符合三角形的三边关系.所以0>x ,0>y ,y x x >+即满足:0>x ,0210>-x ,x x x 210->+答案:525<<x 3.课堂总结【知识梳理】(1)常量、变量是相对的,在一定情况下,可以转化,关键是看在变化过程中,其值是否发生变化.(2)函数的本质是单值对应.(3)函数自变量的取值范围就是使式子和实际问题有意义.【重难点突破】(1)本节内容是关于函数的最基础的知识,对后续学习内容,打好基础至关重要。

了解变量与常量,理解函数的定义,会函数自变量的取值范围,为后面研究具体的初等函数做准备.(2)求函数自变量的取值范围既要考虑数学式子本身有意义,即分母不等于0,二次根式的被开方数非负,又要考虑实际问题的实际意义。

出现的情况都要考虑.4.随堂检测1.某人以5千米/时的速度步行,所走的路程S=5t ,在这个过程中,下列判断中错误的是 ( )A .S ,t 是变量B .t 是变量C .5是常量D .5,S 是常量 (知识点:常量与变量)【参考答案】D.2.用总长为100 m 的篱笆围成长方形场地,设此长方形的面积为 S (m 2),一边长为 L (m).下列说法正确的是( )A.L 是常量B.S 是常量, L 是变量C.100、S、L是变量D.100是常量,L、S是变量(知识点:常量与变量)【答案】D3. 如图所示的曲线中,不能表示y是x的函数的是().A. B. C. D.(知识点:常量与变量;数学思想:数形结合)【答案】D4.小军用40元钱去买单价是6元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A.Q=6x B.Q=6x-40 C.Q=40-6x D.Q=6x+40(知识点:函数关系式)【答案】C5.若y与x的关系式为y=10x-6,当x=1时,y的值为()A.5 B.10 C.4 D.-4(知识点:函数值)【答案】C6.函数2y x=-x的取值范围是()A. x≥2B. x≠2C. x>2D. x<2(知识点:函数自变量的取值范围)【答案】A【解析】根据二次根式的被开方数非负,故选A7. 油箱中有油20kg,油从管道中匀速流出,50min可流完,油箱中剩油量M(kg)与流出时间t(min)的函数关系式为()A.M=20-25t B.tM5220-= (0≤t≤50)C.M=20-15t(0≤t≤50) D.M=20-4t(0≤t≤50)( 知识点:函数自变量的取值范围)【答案】B【解析】根据50min 可流完油箱中的油20kg ,故流速52kg/min, 剩油量M 与流出时间t(min)的函数关系式,同时注意自变量的取值范围,故选B19.1.1变量与函数第二课时课题说明:本节课讲授的是人教版八下第19.1.1正比例函数的第2课时的内容.在第1课时学习了正比例函数概念的基础上,研究正比例函数的图象和性质.教学目标:1、知识目标:(1)探究正比例函数图象的特征,会按条件正确画出正比例函数图象;(2)理解正比例函数的性质.2、能力目标:(1)通过对正比例函数图象特征(直线形)的观察和分析,促进学生由感性思维向理性思维的发展,提高学生的逻辑思维能力;(2)通过对于正比例函数性质(增减性)的讨论,增强学生“数形结合”的观念;(3)由正比例函数y=x图象的探究,推广到正比例函数y=kx图象的探究,使学生体会由“特殊”到“一般”的数学思想方法,提高他们的概括能力、抽象能力;(4)通过动手绘制图象,提高学生的操作能力.3、情感目标:(1)体会数学学习是一个充满探索的过程,多问几个“为什么?”会不断地激发学生的求知欲,使他们或多或少地获得成功的喜悦.(2)通过对正比例函数图象特征的解释、分析,使学生体会理性思维的魅力.教学重点:1、正比例函数图象的特征和画法;2、正比例函数的性质.教学难点:正比例函数图象特征(直线形)的分析说明.教学流程:1、切入课题,研究最简单的正比例函数y=x的图象(1)师生共同分析正比例函数y=x的自变量和函数值的取值范围.(2)要求学生按列表、描点、连线三个步骤,完成正比例函数y=x的绘制.(要求所有学生都要动手去画,一个学生在黑板上画,以便为下面分析图象特征做准备.)(3)启发学生观察图象的特征,引导学生思考:y=x的图象为什么是一条直线?你能解释说明吗?(目前,学生应有两个途径可解决这个问题,一个是利用在第11章中学过的角平分线性质及其逆命题,另一个是选取描点时画出的连续三个点,说明以这三点连线构成的是一个平角,也即这三个点在同一条直线上.)2、研究正比例函数y=-x的图象启发学生类比y =x 图象,思考y =-x 图象,通过比较异同,归纳出y =-x 图象的形状.(可先不必画出,等到后面学习过两点画正比例函数图象时一并解决.)3、研究正比例函数y =2x 的图象(1)列表、描点、连线,画出图象;(2) 观察图象的特征,提出y =2x 的图象为什么也是一条直线?(启发学生:“显而易见不能用角分线的性质及其逆命题解释了,那该怎样说明呢?”教师要视课堂上的进展酌情而定:若前面处理y =x 图象是利用证明平角解决的,则学生已经积累了经验,得到了暗示;若前面是用角平分线的性质解决的,则教师应及时给出提示,点播思路)4、研究正比例函数y =kx (k ≠0)的图象由y =2x 的图象向y =kx (k ≠0)的图象推广.(因为有难度,可由教师进行点拨式的讲解,不过多深入,点到为止,只追求开拓学生视野,体会理性思维的魅力)5、正比例函数图象的画法(1)归纳:y =kx (k ≠0)的图象是过点(0,0)和点(1,k )的直线;(2)画y =-x ,y =-2x ,y =21x ,y =-21x 的图象.6、研究正比例函数y =kx (k ≠0)的性质(1)从图象直接观察直线从左向右的上升或下降趋势,以及在各象限的分布情况;(2)归纳自变量从小到大变化时相应的函数值增加或减小的变化规律,分析图象在不同象限分布规律的原因.7、小结,结束教学.。

相关文档
最新文档