典型环节的传递函数(课堂PPT)
合集下载
第二章(3)传递函数.ppt

m
cxo kxo kxi csX o (s) kXo (s) kXi (s) c
传递函数 G(s) Xo(s) k 1 Xi (s) cs k Ts 1
略去质量的阻尼—弹簧系统
例 如图所示无源滤波电路,
已知
u i
(t)
i(t)R
1 C
u 0 (t)
1 C
i(t)dt
i(t)dt
g(t) L1[G(s)]
传递函数具有以下特点:
(1) 传递函数的分母是系统的特征多项式,代表系统的 固有特性;分子代表输入与系统的关系,而与输入 量无关,因此传递函数表达了系统本身的固有特性。
(2) 传递函数不说明被描述系统的具体物理结构,不同 的物理系统可能具有相同的传积分运算转化为简单的代数运算;
特点:延时环节也是线性环节,有输入信号后,在τ时间内没有任何输出, 到τ时间后,不失真地反映输入。 延时常作为一个特性,与其他环节共同存在,而不单独存在。
延迟环节与惯性环节的区别:
✓ 惯性环节从输入开始时刻起就已有输出,仅 由于惯性,输出要滞后一段时间才接近所要 求的输出值;
✓ 延迟环节从输入开始之初,在0 ~ 时间内, 没有输出,但t=之后,输出等于之前时刻 的 输入。
电路中常遇到下述的近似微分环节。
图 永磁式直流测速机
2
近似微分环节
G(s) kTs Ts1
已知
u
i
(t)
1 C
i(t)dt i(t)R
u 0 (t) i(t)R
例7 图2-14所示的无源微分电路
ui (t)
C
u0 (t)
其中,
拉氏变换得
U
i
(s)
1 Cs
自动控制原理课件:2_4典型环节

• 电枢回路电压平衡方程
• 电磁转距方程 • 电动机轴上的转距平衡方程
1)确定输入量、输出量 2)确定动态联系
Ua θc
ua
=
Raia
+ La
dia dt
+ eb
eb = Kbωm
(2)
J
dωm dt
=
Mm
−ML
−
fωm
ua
(1)
Eb Eb
ML
(3) Mm
1
Ia
LaS + Ra
1
ωm
JS + f
电磁力矩 M m = Cmia
Ua eb
La
f1 Mm ML
J1
ωmθm 1/i θc
nω
M2
J2 、f2
原理:直流电动机的工作实质是将输入的
电能转换为机械能,也就是由输入的电枢电压Ua(t) 在电枢回路中产生电枢电流ia (t),再由电流ia (t)与激磁磁通相互作用产生电磁转距Mm(t), 从而拖动负载运动。因此,直流电动机的运动方 程可由以下三部分组成。
(4)
Ia Cm
Mm
角速度 ωm = dθm dt
(5)
θm
ωm
S
输出轴转角方程
θm
θc = θm i (6)
1 i
θc
4、传递函数 联结各框图得系统方快图(P39:图表-48)
用结构变换或Mason公式求出传递函数
三、求取系统传递函数的一般方法
步骤: * 1.首先确定出系统的输出信号(被控量等)和输入
信号(如给定值、干扰等)。 * 2.把系统分成若干个典型环节,求出各环节的
传递函数。用信号线把这些方框连接起来,得 到系统的动态结构图。 * 3.对动态结构图进行变换,得到传递函数。
• 电磁转距方程 • 电动机轴上的转距平衡方程
1)确定输入量、输出量 2)确定动态联系
Ua θc
ua
=
Raia
+ La
dia dt
+ eb
eb = Kbωm
(2)
J
dωm dt
=
Mm
−ML
−
fωm
ua
(1)
Eb Eb
ML
(3) Mm
1
Ia
LaS + Ra
1
ωm
JS + f
电磁力矩 M m = Cmia
Ua eb
La
f1 Mm ML
J1
ωmθm 1/i θc
nω
M2
J2 、f2
原理:直流电动机的工作实质是将输入的
电能转换为机械能,也就是由输入的电枢电压Ua(t) 在电枢回路中产生电枢电流ia (t),再由电流ia (t)与激磁磁通相互作用产生电磁转距Mm(t), 从而拖动负载运动。因此,直流电动机的运动方 程可由以下三部分组成。
(4)
Ia Cm
Mm
角速度 ωm = dθm dt
(5)
θm
ωm
S
输出轴转角方程
θm
θc = θm i (6)
1 i
θc
4、传递函数 联结各框图得系统方快图(P39:图表-48)
用结构变换或Mason公式求出传递函数
三、求取系统传递函数的一般方法
步骤: * 1.首先确定出系统的输出信号(被控量等)和输入
信号(如给定值、干扰等)。 * 2.把系统分成若干个典型环节,求出各环节的
传递函数。用信号线把这些方框连接起来,得 到系统的动态结构图。 * 3.对动态结构图进行变换,得到传递函数。
典型环节的传递函数

典型环节的传递函数
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节
•动力学方程为:
xotKxit
•传递函数为:
Gs
Xo s Xi s
K
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节
•动力学方程为:
Tdxdottxotxit
•传递函数为:
GsXXoi ss
1 Ts1
典型环节的传递函数
5、导前环节(一阶微分环节) 又称为一阶微分环节,是一个相位超前环节。
•传递函数为:
GsXXoi ssTs1
典型环节的传递函数
6、振荡环节(二பைடு நூலகம்积分环节) 振荡环节是二阶环节,又称二阶振荡环节
•传递函数为:
•动力学方程为:
xotT1xi tdt
•传递函数为:
Gs
Xo s Xi s
1 Ts
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节
•动力学方程为:
xo
t
T
dxi t
dt
•传递函数为:
Gs
Xo s Xi s
Ts
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。
G sX Xo isss22 n 2 nsn 2
GsX Xo issT2s22 1Ts1
典型环节的传递函数
7、二阶微分环节
•传递函数为:
G sX Xo isss22 n 2 nsn 2 GsX Xo issT2s22Ts1
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节
•动力学方程为:
xotKxit
•传递函数为:
Gs
Xo s Xi s
K
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节
•动力学方程为:
Tdxdottxotxit
•传递函数为:
GsXXoi ss
1 Ts1
典型环节的传递函数
5、导前环节(一阶微分环节) 又称为一阶微分环节,是一个相位超前环节。
•传递函数为:
GsXXoi ssTs1
典型环节的传递函数
6、振荡环节(二பைடு நூலகம்积分环节) 振荡环节是二阶环节,又称二阶振荡环节
•传递函数为:
•动力学方程为:
xotT1xi tdt
•传递函数为:
Gs
Xo s Xi s
1 Ts
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节
•动力学方程为:
xo
t
T
dxi t
dt
•传递函数为:
Gs
Xo s Xi s
Ts
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。
G sX Xo isss22 n 2 nsn 2
GsX Xo issT2s22 1Ts1
典型环节的传递函数
7、二阶微分环节
•传递函数为:
G sX Xo isss22 n 2 nsn 2 GsX Xo issT2s22Ts1
典型环节的传递函数

21
一、典型输入信号
1. 阶跃函数:
r(t)
a t 0
a
r(t) 0 t 0
t
单位阶跃函数:
1 t 0 r(t) 1(t) 0 t 0
单位阶跃函数的拉氏变换
R(s) L[1(t)] 1 s
22
2. 速度函数(斜坡函数):
r(t)
at t 0
r(t)
0
t0
at
t
单位速度函数(斜坡函数):
传递函数为: G(s)
1
s
积分环节原理图为:
U2(s) 1/ Cf s 1 1 U1(s) R1 R1C f s Tis
4
空载油缸
流量:
Q
f
(t)
A
dx(t) dt
X (s) 1/ A K Q f (s) s s
小惯性电动机
m(s) Km
Ua(s) s
三、理想微分环节 微分方程为:c(t) dr(t)
4. 调节时间ts:整个过渡过程所经历的时间,有时也叫过渡过 程时间。
30
5. 超调量σ%: 响应过程中,输出量
超出稳态值的最大偏差值, 一般用它与稳态值的比值 的百分数表示,即
% h(t p ) h() 100%
h()
6. 振荡次数N:单位阶跃响应曲线在0→ts时间内,穿越稳态 值次数的一半称为振荡次数。
31
7.稳态误差ess:对单位 负反馈系统,当时间t 趋于无穷时,系统单 位阶跃响应的期望值 [即输入量1(t)] 与实际值 (即稳态值)之差,定义为 稳态误差:
ess =1 - h(∞)
当h(∞) =1时,系统的稳态误差为零。
32
注意: σ%
最新-696-传递函数-PPT文档资料

(2)
1
L(ss 1)IR(sI)CI(ss)U r(s)
Cs I(s) Uc (s)
(3) (4)
L2 U C c (s ) s RC c (s ) U s c (s U ) U r(s )
G(s)U Uc r((ss))LC 21 sRC 1s
(5) (6)
例10:写出图示系统在电枢G(s) (s)
M N
(s) (s)
二、传递函数的性质
1.传递函数只与系统(元件)本身的结构参数有 关。 2.传递函数只适用于线性定常系统。 3.传递函数是在零初始条件下导出的,因此传递 函数原则上不能反应系统在非零初始条件下的全 部运动规律。
4.传递函数是复变量s的有理分式,对于实际的 物理系统来说,分子多项式的阶次m不高于分
第三节 传递函数
目前在经典控制理论中广泛使用的分析 设计方法--频率法和根轨迹法,不是直 接求解微分方程,而是采用与微分方程有 关的另一种数学模型-传递函数,间接地 分析系统结构参数对响应的影响,十分方 便。
第三节 传递函数
一、传递函数的概念 二、传递函数的性质 三、由微分方程直接求传递函数 四、典型环节及其传递函数
uc
(t)
1 C
(1)
i(t)dt ur (t)
(2)
i
C uc(t)
RCdudct(t)uc(t)ur(t)(3)
图2-9 RC电路
RC c(s) s U c U (s) U r(s) (4)
G(s)Uc(s) 1
(5)
Ur(s) RCs1
令
G(s) 1
(6)
T=R
Ts 1
G(s)Uc(s) 1 (5) Ur(s) RCs1
5--典型环节传递函数-延时环节课件

延迟环节(又称纯滞后环节) (Pure Time DelayElement)
其输出量与输入量变化形式相同,但要延迟一段时间
1.微分方程
式中 —
(Delay Time)。
1
延迟环节(又称纯滞后环节) (Pure Time DelayElement)
2.传递函数与功能框
由拉氏变换延迟定理可得
若将
按泰勒(Tayor)
4
延迟环节(又称纯滞后环节) (Pure Time DelayElement)
3.举例
一钢板轧机如图,若轧机轧辊中心线到厚度测量仪的距
离为d (这段距离无法避免),设轧钢的线速度为v,则测
得实际厚度的时刻要比轧制的时刻延迟 (
)。
5
由于 很小,所以可只取前两项,
上式表明,在延迟时间很小的情况下,延迟环节可用 一个小惯性环节来代替。
2
延迟环节(又称纯滞后环节) (Pure Time D时环节的 功能框图
3
阶跃响应
延迟环节(又称纯滞后环节) (Pure Time DelayElement)
3.举例 ① 液压油从液压泵到阀控油缸间的管道传输产生的时间上
② 热量通过传导因传输速率低而造成的时间上的延迟。 ③ 晶闸管整流电路,当控制电压改变时,由于晶闸管导通
后即失控,要等到下一个周期开始后才能响应,这意味 着,在时间上也会造成延迟(对单相全波电路,平均延 迟时间 =5ms;对三相桥式, =1.7ms) ④ 各种传送带(或传送装置)因传送造成的时间上的延迟。 ⑤
其输出量与输入量变化形式相同,但要延迟一段时间
1.微分方程
式中 —
(Delay Time)。
1
延迟环节(又称纯滞后环节) (Pure Time DelayElement)
2.传递函数与功能框
由拉氏变换延迟定理可得
若将
按泰勒(Tayor)
4
延迟环节(又称纯滞后环节) (Pure Time DelayElement)
3.举例
一钢板轧机如图,若轧机轧辊中心线到厚度测量仪的距
离为d (这段距离无法避免),设轧钢的线速度为v,则测
得实际厚度的时刻要比轧制的时刻延迟 (
)。
5
由于 很小,所以可只取前两项,
上式表明,在延迟时间很小的情况下,延迟环节可用 一个小惯性环节来代替。
2
延迟环节(又称纯滞后环节) (Pure Time D时环节的 功能框图
3
阶跃响应
延迟环节(又称纯滞后环节) (Pure Time DelayElement)
3.举例 ① 液压油从液压泵到阀控油缸间的管道传输产生的时间上
② 热量通过传导因传输速率低而造成的时间上的延迟。 ③ 晶闸管整流电路,当控制电压改变时,由于晶闸管导通
后即失控,要等到下一个周期开始后才能响应,这意味 着,在时间上也会造成延迟(对单相全波电路,平均延 迟时间 =5ms;对三相桥式, =1.7ms) ④ 各种传送带(或传送装置)因传送造成的时间上的延迟。 ⑤
自动控制原理_2.4典型环节传递函数

B盘以角速度ω 转动时,因 B盘和I 轴
间以滑动键联接,故B盘滑动就会改变
偏心量e;当时e=0,A盘转动而 B盘不
转;e增大, B盘角速度ω 正比的增大, 设K为比例常数,B盘转角为θ (t)。 输入— e 输出—θ (t)
解: (t ) Ke(t )
(t ) K e(t )dt
di(t ) 1 ui (t ) L i(t ) R i(t )dt dt C 1 uo (t ) i(t )dt C
§2.4.6 延时环节(迟延环节)
xo (t ) xi (t )
τ为延迟时间
L[ x0 (t )] L[ xi (t )] G( s ) L[ xi (t )] L[ xi (t )]
当|Ts|<<1时,G(s)=Ts,
才近似为理想的微分环节。
此系统为包含有惯性环节及微分环节的系统。
(1)预见输入(ቤተ መጻሕፍቲ ባይዱ输入提前)
比例环节
R(s) r(t) t
1
1
X o ( s)
xo (t )
o
45
t
比例+微分
R(s) r(t ) t
1 Ts
X o ( s)
xo (t )
K G( s ) Ts 1
K为惯性环节的增益或放大系数;T为时间常数
理想的一阶惯性环节
1 G( s ) Ts 1
例1. 无源滤波电路
ui uo C为电容 R为电阻
1 ui (t ) i (t ) R i (t )dt C 解: 1 uo (t ) i (t )dt C 1 U i (t ) I ( s) R I (s) Cs LT得: 1 U o (t ) I ( s) Cs
第二章传递函数讲解ppt课件

求指数函数e-αt的象函数。
解:
F(s)L[eat] eaet stdt e(sa)tdt
0
0
1 e(sa)t
s
|0s1
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
常用函数的拉氏变换对照表
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
②定义: 设函数f(t)满足 ①t<0时 f(t)=0 ②t>0时,f(t)连续,则f(t)的拉氏变换存在,表示为:
F(s)L [f(t)]f(t)esdt 0
拉氏变换函数 (象函数)
原函数
衰减因子,其中: τ-时间常数 s = -σ+jω为拉氏变换算
子,其中: σ-衰减系数 ω-振荡频率(rad/s)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
建立控制系统数学模型的方法:
分析法(又称机理建模法)是根据组成系统各元 件工作过程中所遵循的物理定理来进行。例如: 电路中的基尔霍夫电路定理,力学中的牛顿定 理,热力学中的热力学定理等。对于系统结构 以知的常用此法。
④ 性质: 篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1) 叠加定理:两个函数代数和的拉氏变换等 于两个函数拉氏变换的代数和。 即
L[f1(t)f2(t) ]L[f1(t) ]L[f2(t) ]
dt
解:
F(s)L[eat] eaet stdt e(sa)tdt
0
0
1 e(sa)t
s
|0s1
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
常用函数的拉氏变换对照表
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
②定义: 设函数f(t)满足 ①t<0时 f(t)=0 ②t>0时,f(t)连续,则f(t)的拉氏变换存在,表示为:
F(s)L [f(t)]f(t)esdt 0
拉氏变换函数 (象函数)
原函数
衰减因子,其中: τ-时间常数 s = -σ+jω为拉氏变换算
子,其中: σ-衰减系数 ω-振荡频率(rad/s)
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
建立控制系统数学模型的方法:
分析法(又称机理建模法)是根据组成系统各元 件工作过程中所遵循的物理定理来进行。例如: 电路中的基尔霍夫电路定理,力学中的牛顿定 理,热力学中的热力学定理等。对于系统结构 以知的常用此法。
④ 性质: 篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1) 叠加定理:两个函数代数和的拉氏变换等 于两个函数拉氏变换的代数和。 即
L[f1(t)f2(t) ]L[f1(t) ]L[f2(t) ]
dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型环节的传递函数
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节
•动力学方程为:
xotKxi t
•传递函数为:
Gs
Xo Xi
s s
.
K
1
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节
输入的环节,又称为时滞环节。 •动力学方程为:
xotxit
•传递函数为:
Gs
Xo s Xi s.
es
8
•拉普拉斯变换:
FsL ft 0 ftestdt
sai
•拉普拉斯反变换:
ftL 1 F s 2 1ia a iiF sestd s
.
9
•动力学方程为:
Tdxdottxotxi t
•传递函数为:
Gs
Xos 1 Xi s. Ts1
4
典型环节的传递函数
5、导前环节(一阶微分环节) 又称为一阶微分环节,是一个相位超前环节。
•传递函数为:
Gs
Xo s Xi s
Ts1
.
பைடு நூலகம்
5
典型环节的传递函数
6、振荡环节(二阶积分环节) 振荡环节是二阶环节,又称二阶振荡环节
•动力学方程为:
xo
t
1 T
xi
tdt
•传递函数为:
Gs
Xo Xi
s s
.
1 Ts
2
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节
•动力学方程为:
xo
t
T
dxi t
dt
•传递函数为:
Gs
Xo Xi
s s
.
Ts
3
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。
•传递函数为:
GsX Xo isss22 n 2nsn 2
GsX Xo issT2s22 1Ts1
.
6
典型环节的传递函数
7、二阶微分环节
•传递函数为:
GsX Xo isss22 n 2nsn 2
GsX Xo issT2s22Ts1
.
7
典型环节的传递函数
8、延时环节
延时环节是输出滞后输入时间 但不失真地反映
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节
•动力学方程为:
xotKxi t
•传递函数为:
Gs
Xo Xi
s s
.
K
1
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节
输入的环节,又称为时滞环节。 •动力学方程为:
xotxit
•传递函数为:
Gs
Xo s Xi s.
es
8
•拉普拉斯变换:
FsL ft 0 ftestdt
sai
•拉普拉斯反变换:
ftL 1 F s 2 1ia a iiF sestd s
.
9
•动力学方程为:
Tdxdottxotxi t
•传递函数为:
Gs
Xos 1 Xi s. Ts1
4
典型环节的传递函数
5、导前环节(一阶微分环节) 又称为一阶微分环节,是一个相位超前环节。
•传递函数为:
Gs
Xo s Xi s
Ts1
.
பைடு நூலகம்
5
典型环节的传递函数
6、振荡环节(二阶积分环节) 振荡环节是二阶环节,又称二阶振荡环节
•动力学方程为:
xo
t
1 T
xi
tdt
•传递函数为:
Gs
Xo Xi
s s
.
1 Ts
2
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节
•动力学方程为:
xo
t
T
dxi t
dt
•传递函数为:
Gs
Xo Xi
s s
.
Ts
3
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。
•传递函数为:
GsX Xo isss22 n 2nsn 2
GsX Xo issT2s22 1Ts1
.
6
典型环节的传递函数
7、二阶微分环节
•传递函数为:
GsX Xo isss22 n 2nsn 2
GsX Xo issT2s22Ts1
.
7
典型环节的传递函数
8、延时环节
延时环节是输出滞后输入时间 但不失真地反映