第1节 锐角三角函数的概念
人教版九年级数学下册《锐角三角函数》说课稿

人教版九年级数学下册《锐角三角函数》说课稿一、说教材本章教材分为二个小节:第一节包括锐角三角函数的概念(主要是正弦、余弦、正切的概念),特殊角三角函数值以及用计算器求已知锐角三角函数值或已知三角函数值求锐角;第二节包括解直角三角形。
这两大块是紧密联系的,锐角三角函数是解直角三角形的基础,为解直角三角形提供了有效的工具。
解直角三角形又为锐角三角函数提供了与实际紧密联系的沃土,为锐角三角函数提供了与实际联系的机会。
锐角三角函数在解决现实问题中有着重要的作用,如测量、建筑、物理学中,人们常常遇到距离、角度、高度的计算,这些都归结到直角三角形中边角的关系问题,而这些关系又恰好是锐角三角函数中的正弦、余弦和正切的关系。
纵观近年来的中考,特殊角三角函数的运算以及解直角三角形的应用也是考查的重点,题目设计贴近于实际生活。
因此,是初中数学的教学的重要内容之一。
同时,又为学生进入高中后学习任意角三角函数打下基础。
二、说教学目标(一)知识与技能目标:1、通过实例使学生理解并认识锐角三角函数的概念,符号的含义,掌握锐角三角函数正弦、余弦、正切的表示。
2、使学生知道当直角三角形的锐角固定时,那么它的三角函数值也都固定这一事实。
3、掌握特殊角30°、45°、60°正弦、余弦、正切值。
4、能够正确使用计算器,由已知角求函数值求或由已知函数值求锐角。
5、使学生学会根据定义求锐角的三角函数。
6、了解坡度问题中坡比、铅直高度、水平距离等有关的概念,用坡度解决实际问题。
(二)情感、态度与价值观目标:学生要得出直角三角形中边与角之间的关系,需要学生进行观察、思考、交流,合作、探究进一步体会数学知识之间的联系,充分感受数学中数形结合的数学思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考的好习惯,并且同时培养学生的团队合作精神。
浙教版数学九年级下册1.1《锐角三角函数》教案

浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。
本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。
但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。
三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。
四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。
五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。
六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。
从而引出锐角三角函数的概念。
2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。
通过示例,让学生掌握如何运用锐角三角函数解决实际问题。
3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。
教师巡回指导,为学生提供帮助。
4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。
教师及时批改,给予反馈。
5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。
浙教版数学九年级下册1.1《锐角三角函数》教学设计

浙教版数学九年级下册1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。
本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
通过本节课的学习,学生能够理解锐角三角函数的概念,掌握各函数的定义及性质,并能运用其解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但锐角三角函数的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,教师需要注重引导学生通过实例来理解抽象的锐角三角函数概念,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质。
2.过程与方法:通过实例分析,引导学生运用锐角三角函数解决实际问题。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念及其性质。
2.难点:正弦、余弦、正切函数的定义及性质。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,引导学生理解其应用。
2.讲授法:讲解锐角三角函数的定义及性质,引导学生进行思考。
3.实践操作法:让学生通过实际操作,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及性质。
2.实例材料:准备相关的生活实例,用于引入锐角三角函数的概念。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、航海员测定方向等,引导学生思考如何利用三角函数解决问题。
通过实例引入锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
利用课件展示各函数的图像,帮助学生理解其性质。
3.操练(15分钟)让学生分组进行实践操作,运用锐角三角函数解决实际问题。
浙教版数学九年级下册1.1《锐角三角函数》说课稿

浙教版数学九年级下册1.1《锐角三角函数》说课稿一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章的第一节内容。
本节内容是在学生已经掌握了锐角三角函数的定义、正弦、余弦、正切的概念和性质的基础上进行进一步的学习。
教材从实际问题出发,引导学生利用锐角三角函数解决实际问题,从而加深学生对锐角三角函数的理解和应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数的概念和性质有了初步的了解。
但是,学生对于如何将实际问题与锐角三角函数联系起来,如何运用锐角三角函数解决实际问题还比较陌生。
因此,在教学过程中,我需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 说教学目标1.知识与技能目标:使学生掌握锐角三角函数的定义,理解正弦、余弦、正切的含义,学会用锐角三角函数解决实际问题。
2.过程与方法目标:通过观察、实验、探究等活动,培养学生的动手操作能力和小组合作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:锐角三角函数的定义,正弦、余弦、正切的含义。
2.教学难点:如何将实际问题与锐角三角函数联系起来,如何运用锐角三角函数解决实际问题。
五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法、案例教学法和小组合作法等教学方法。
同时,利用多媒体课件和教具辅助教学,帮助学生直观地理解锐角三角函数的概念和性质。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何利用锐角三角函数解决问题,激发学生的学习兴趣。
2.新课导入:介绍锐角三角函数的定义,引导学生通过观察、实验等活动,探究正弦、余弦、正切的含义。
3.案例分析:分析几个实际问题,引导学生运用锐角三角函数解决问题,巩固学生对知识的理解。
4.小组讨论:让学生分组讨论,分享各自解决问题的方法,培养学生的合作能力。
5.总结提升:对所学内容进行总结,强调重点知识,引导学生思考如何运用所学知识解决实际问题。
第1节 锐角三角函数的概念

第1节 锐角三角函数的概念※知识要点 1.正切的概念如图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正切,记作: = = .注意:(1)表示锐角三角函数时,用顶点字母表示角时,角的符号“∠”可以 ,其他情况,不可 ; (2)正切的实质是 , 大小, 单位;(3)正切的几何意义是反映斜边 的大小;(4)正切的大小只与 有关,相等的两个角的正切值 . 2.与坡有关的概念(1)坡的构成: 、 、 ;(2)坡角: 与 所成的角;(3)坡度:又称 ,是斜坡上两点间 与水平距离的比,常用 表示, 即坡角的 值.注:坡角越大,坡度 ,坡面 . 3.正弦与余弦的概念(1)正弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正弦,记作: = = . (2)余弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的余弦,记作: = = . 注:互余关系:若A +B =90°,则有下列关系成立: ① ; ② . ※题型讲练【例1】如图,在△ABC 中,∠C =90°,AB =13,AC =5, 求tanB 和tan ∠BCD 的值.【例2】如图,一段河坝的横断面为梯形ABCD ,根据图中的数据,回答下列问题(单位:m ): (1)求坡面AB 的坡度; (2)求出坝底宽AD .变式训练2:1.如图是拦水坝的横断面,坡AB 长65米,坡度为1∶2,另一侧堤坡DE 长8米.(1)求坡AB 的水平距离AC 的长; (2)求堤坡DE 的坡度.【例3】如图,Rt △ABC 中,斜边BC 上的高AD =4,cosB =45.(1)求sinB 和tanB 的值;(2)求AC 和BC 的长度.变式训练3:1.在△ABC 中,∠C =90°,若tanA =2,AC =4,求cosB 、 sinB 、sinA 、cosA 、tanB 的值并思考它们之间的关系.【例4】如图,△ABC 中,AC =12cm,AB =16cm,sinA =13. (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tanB .※课后练习1.△ABC 中,∠C =90°,若BC =4,AB =5,则tanB =( ) A .45 B .35 C .34 D .432.Rt △ABC 中,∠C =90°,若sinA =35,则cosB 的值是( )A .45B .35C .34D .433.如图是教学用的直角三角板,边AC =30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为( )A .303cmB .203cmC .103cmD .53cm4.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =5 m ,则坡面AB 的长度是( )A .10 mB .103mC .15 mD .53m 5.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠AOB 的正弦值是( )A .31010B .12C .13D .10106.在Rt △ABC 中,∠C =90°,AB =10,sinA =25,则BC 的长为 ,tanA = .7.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD = .8.如图,是拦水坝的横断面,斜坡AB =125米,BD =10米,AE =38米,若斜面AB 坡度为1∶2,则坡DE 的坡度为 . 9.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sinA =32; ②cosB =12; ③tanA =33; ④tanB = 3其中正确的是 .(填序号)10.已知Rt △ABC 中,∠C =90°,BC =12,tanA =34 .求AC 、AB 和cosB .11.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,求tan ∠AFE 和sin ∠BCE 的值.12.如图是一个大坝的横断面,它是一个梯形ABCD ,其中坝顶AB =3米,经测量背水坡AD =20米,坝高10米,迎水坡BC 的坡度i =1:0.6,求坡AD 的坡度和坝底宽CD .13.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sinB 和tanA .14.如图,在△ABC 中,∠C =90°,点D ,E 分别在AC ,AB上,BD 平分∠ABC ,DE ⊥AB ,AE =6,cosA =35.求:(1)DE ,CD 的长; (2)tan ∠DBC 的值.第3题图第5题图第4题图第8题图第7题图。
北师大版九年级上册数学 第一章 直角三角形的边角关系 全章经典教案

第一章 直角三角形的边角关系第1节 锐角三角函数导入:如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?【知识梳理】1、正切的定义在确定,那么A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA 。
即tanA=baA =∠∠的邻边的对边A■例1已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。
跟踪练习:1、在Rt △ABC 中,锐角A 的对边和邻边同时扩大100 倍,tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不能确定 2、已知∠A,∠B 为锐角(1)若∠A=∠B,则tanA tanB; (2)若tanA=tanB,则∠A ∠B.3、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.4、在等腰△ABC 中,AB=AC=13,BC=10,求tanB.5、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.2、坡度的定义及表示(难点)我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比)。
坡度常用字母i 表示。
斜坡的坡度和坡角的正切值关系是:lha =tan 注意:(1)坡度一般写成1:m 的形式(比例的前项为1,后项可以是小数); (2)若坡角为a ,坡度为a lhi tan ==,坡度越大,则a 角越大,坡面越陡。
■例2拦水坝的横断面为梯形ABCD ,坝顶宽BC 为6m ,坝高为3.2m ,为了提高拦水坝的拦水能力,需要将水坝加高2m ,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的i=1:2变成i’=1:2.5(有关数据在图上已标明)。
求加高后的坝底HD 的宽为多少?跟踪练习:1、如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)2、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高_______米3、正弦、余弦的定义在Rt 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。
沪科版初中数学初三数学上册《锐角的三角函数值》说课稿

沪科版初中数学初三数学上册《锐角的三角函数值》说课稿一、教材解析《锐角的三角函数值》是沪科版初中数学初三数学上册的一篇重要内容,主要涉及到锐角以及锐角三角函数的概念和性质。
通过学习本节内容,学生将会更深入地理解三角函数,并掌握求解锐角的三角函数值的方法。
本节的教学内容主要包括以下几个方面:1.锐角的定义:介绍了什么是锐角,以及锐角的特点和表示方法。
2.弧度制与角度制:介绍了弧度制和角度制之间的转换关系,并且通过实例演示了如何使用弧度制求解锐角的正弦、余弦和正切值。
3.正弦函数、余弦函数和正切函数的性质:详细讲解了正弦函数、余弦函数和正切函数的定义和基本性质,并通过例题引导学生理解三角函数的特点。
4.求解锐角的三角函数值:提供了一些常见锐角的三角函数值,并通过练习题与学生互动,巩固概念。
二、教学目标本节课的主要教学目标如下:1.理解锐角的定义,能够运用所学知识判断一个角是否为锐角。
2.理解弧度制与角度制的转换关系,能够在不同制度下计算角的三角函数值。
3.掌握正弦函数、余弦函数和正切函数的定义和基本性质。
4.能够求解给定锐角的三角函数值,并运用所学知识解决相关问题。
三、教学重点和难点本节课的教学重点包括:1.锐角的定义和性质。
2.弧度制与角度制之间的转换关系。
3.正弦函数、余弦函数和正切函数的定义和基本性质。
教学难点主要有:1.弧度制和角度制的混合运用。
2.正弦函数、余弦函数和正切函数的计算和应用。
四、教学内容和步骤1. 导入与导入预热(5分钟)在开始正式的教学过程前,教师可以通过提问的方式温习上节课所学的知识,引导学生重新回顾直角三角函数。
这样可以帮助学生进入学习状态并激发他们的学习兴趣。
2. 引入新知(10分钟)在本节课中,教师以锐角三角函数的定义为切入点,引入新知识。
通过简单的图示和实例,向学生介绍什么是锐角,并与直角和钝角进行对比,帮助学生更好地理解锐角的概念。
3. 弧度制与角度制(10分钟)本节课的重点之一是理解弧度制与角度制之间的转换关系。
1.1锐角三角函数(1)教学设计

1.1锐角三角函数(1)教学设计一、教学内容分析本节课是三角函数的起始课,是在学生学习了正比例函数、一次函数、反比例函数以及二次函数后已对函数有了一定的理解的基础上来学习,但是三角函数与以前学习过的函数有着较在区别,函数值随角度变化而变化,函数值是关于角度的函数与所在三角形无关很难理解,课本把它放在直角三角形中来进行定义及进行简单计算,可以降低难度,学生能更好地理解学习,本课时主要内容是三角函数的概念及进行简单的计算应用,而其中三角函数的概念应是本节课的难点。
二、学习类型与任务分析(一)学习类型1、学习结果(1)三角函数的概念是数学概念(2)在直角三角形中函数值恰好等于边长之比是数学原理(3)利用利用三角函数的定义进行简单计算是数学技能,数形结合思想是数学思想方法。
(4)利用各种方法进行因式分解,因式分解的应用是数学问题解决。
(5)通过让学生体验三角函数来源于生活;通过构造直角三角形来计算锐角三角函数值的过程是数学认识策略。
2、学习形式锐角三角函数(1)是三角函数的起始课,属上位学习;三角函数的概念形成很抽象,宜通过实例、生活情境入手引入,让学生从实例中探究,体验概念的形成过程,宜采用探究与合作相结合的启发式教与学。
(二)学生的起点能力1.函数概念,一些特殊简单函数及其性质的学习。
2.线段比例及相似三角形(图形)的学习。
三、教学目标知识技能目标:了解三角函数的概念,学会在直角三角形中进行一些简单的计算。
过程方法目标:(1)通过体验三角函数概念的形成过程增进学生的数学经验(2)渗透数形结合的数学思想方法。
(3)培养学生主动探索,敢于实践,勇于发现,合作交流的精神。
情感态度目标(1)让学生感受数学来源于生活又应用于生活,体验数学的生活化经历。
(2)通过实际问题情境的经历探究性的学习培养学生学习数学的兴趣,培养学生热爱数学、热爱生活的情感。
四、教学重、难点重点:锐角三角函数的概念及其简单的计算难点:三角函数概念的形成五、教学流程教师活动;(一)实例引入,问题提出:生活中处处有数学,数学就在我们身边,每次新知识的学习都与生活问题的解决相关,下面我们说说生活中的又一例:生活中有很多的“陡峭”与“平坦”的问题,如我们常见的各色梯子、商场里的电动扶梯、大城市里的过街天桥等,在生活中我们经常讲这个坡太“陡”那个坡比较“平”,那么,我们又是用哪些量来衡量“陡”与“平”的呢?(幻灯片1)上图是我们把天桥改“平”的示意图,我们这次次改造过程中有哪些量保持不变,哪些量发生了变化?它们的变化有联系吗?(幻灯片2和3)如果进行上图的另两种改法呢?由此看来坡改“平”之中这些改变的量之间到底有何必然联系有待我们去探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1节 锐角三角函数的概
念
※知识要点 1.正切的概念
如图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正切,
记作: = = .
注意:(1)表示锐角三角函数时,用顶点字母表示角时,角的符号“∠”可以 ,其他情况,不可 ;
(2)正切的实质是 , 大小, 单位;
(3)正切的几何意义是反映斜边 的大小; (4)正切的大小只与 有关,相等的两个角的正切值 .
2.与坡有关的概念 (1)坡的构成: 、 、 ; (2)坡角: 与 所成的角; (3)坡度:又称 ,是斜坡上两点间 与水平距离的比,常用 表示, 即坡角的 值.
注:坡角越大,坡度 ,坡面 . 3.正弦与余弦的概念
(1)正弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正弦,记作: = = . (2)余弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的余弦,记作: = = . 注:互余关系:若A +B =90°,则有下列关系成立: ※题型讲练
【例1】如图,在△ABC 中,∠C =90°,AB =13,AC =5, 求tanB 和tan ∠BCD 的值. 变式训练1:
1.如图,E 是BC 上一点,∠B =∠C =90°,连接AE 、DE 且
AE ⊥DE ,若tanA =3
4
.
(1)求tanD ;
(2)若BC =AE =10,求DC 的长.
【例2】如图,一段河坝的横断面为梯形ABCD ,根据图中的数据,回答下列问题(单位:m ): (1)求坡面AB 的坡度; (2)求出坝底宽AD . 变式训练2:
1.如图是拦水坝的横断面,坡AB 长65米,坡度为1∶2,另一侧堤坡DE 长8米.
(1)求坡AB 的水平距离AC 的长; (2)求堤坡DE 的坡度.
【例3】如图,Rt △ABC 中,斜边BC 上的高AD =4,cosB =45
.
(1)求sinB 和tanB 的值;
(2)求AC 和BC 的长度.
变式训练3:
1.在△ABC 中,∠C =90°,若tanA =2,AC =4,求cosB 、 sinB 、sinA 、cosA 、tanB 的值并思考它们之间的关系. 【例4】如图,△ABC 中,AC =12cm ,AB =16cm ,sinA =1
3
. (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tanB . ※课后练习
1.△ABC 中,∠C =90°,若BC =4,AB =5,则tanB =( )
A .45
B .35
C .34
D .43
2.Rt △ABC 中,∠C =90°,若sinA =3
5
,则cosB 的值是( )
A .45
B .35
C .34
D .43 3.如图是教学用的直角三角板,边AC =30 cm ,∠C =90°,
tan ∠BAC =3
3
,则边BC 的长为( )
A .303cm
B .203cm
C .103cm
D .53cm
4.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC
=5 m ,则坡面AB 的长度是( )
A .10 m
B .103m
C .15 m
D .53m 5.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠AOB 的正弦值是( ) A .
31010 B .12 C .13 D .1010
6.在Rt △ABC 中,∠C =90°,AB =10,sinA =25,则BC 的长
为 ,tanA = .
7.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD = .
8.如图,是拦水坝的横断面,斜坡AB =125米,BD =10米,AE =38米,若斜面AB 坡度为1∶2,则坡DE 的坡度为 . 9.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:
①sinA =32; ②cosB =12; ③tanA =3
3
; ④tanB = 3
其中正确的是 .(填序号)
10.已知Rt △ABC 中,∠C =90°,BC =12,tanA =3
4 .
求AC 、AB 和cosB .
11.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,求tan ∠AFE 和sin ∠BCE 的值.
12.如图是一个大坝的横断面,它是一个梯形ABCD ,其中坝顶AB =3米,经测量背水坡AD =20米,坝高10米,迎水坡BC 的坡度i =1:0.6,求坡AD 的坡度和坝底宽CD . 13.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积
第3题图 第5题图 第4题图 第8题图
第7题图
等于9,求sinB 和tanA .
14.如图,在△ABC 中,∠C =90°,点D ,E 分别在AC ,AB
上,BD 平分∠ABC ,DE ⊥AB ,AE =6,cos A =3
5
.
求:(1)DE ,CD 的长; (2)tan ∠DBC 的值.。