圆的性质及与圆有关的位置关系
圆的有关概念、性质与圆有关的位置关系

【2020中考数学专项复习】:圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)离相等,即外心不一定在三角形内部(1)(2)OABAC心在三角形内部3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述. (1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P 在⊙O 外,连接PO 交⊙O 于A ,延长PO 交⊙O 于B ,则在点P 与⊙O 上各点连接的线段中,PB 最长,PA 最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P 为⊙O 内一点,直径过点P ,交⊙O 于A 、B 两点,则PB 最长、PA 最短. 2.与三角形内心有关的角(1)如图所示,I 是△ABC 的内心,则∠BIC=90°+A ∠21.(2)如图所示,E 是△ABC 的两外角平分线的交点,A BEC ∠21-°90=∠.(3)如图所示,E 是△ABC 内角与外角的平分线的交点,∠E=A ∠21.(4) 如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 分别为切点,则∠DOE =180°-∠A .(5)如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 为切点,A DFE ∠21-°90=∠.(5) 如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 为切点,P 为DE 上一点,则A DPE ∠21+=°90=∠.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O 中,半径OA =4,弦BC 经过半径OA 的中点P ,∠OPC =60°,求弦BC 的长.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB . 【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中. 举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.(1)求证:∠C=∠ABD;(2)若BD=4.8,sinC=45,求⊙O的半径.【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.已知:如图所示,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)求证:CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.【总结升华】有关切线的判定,主要有两种类型,若题目已经给出了直线与圆有公共点,可采用“连半径证垂直”的方法(此题就如此);若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂线,证垂线段等于半径”的方法,简称“作垂直证半径”.举一反三:【变式】如图所示,△ABC中,AB=C,BC=a,CA=b,面积为S.⊙O是△ABC的内切圆,求内切圆半径r.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且21-3=OF,求证△DCE≌△OCB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,则∠CMP的大小是否变化?【总结升华】解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.举一反三:【变式】如图所示,AB是⊙O的直径,C是EA的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.中考总复习:圆的有关概念、性质与圆有关的位置关系—巩固练习(提高)【巩固练习】 一、选择题1. 已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 ( )A.相交B.外切C.外离D.内含2.如图,AB 为⊙ O 的直径,CD 为弦,AB⊥CD ,如果∠BOC=70°,那么∠A 的度数为 ( )A. 70°B.35°C. 30°D. 20°3.已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 ( )A.30°B.60°C.45°D.50°第2题 第3题 第4题 第5题4.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为( )A. 5B. 4C. 3D. 25.如图所示,四边形ABCD 中,DC∥AB,BC=1,AB=AC=AD=2.则BD 的长为 ( )A.B.C.D.6. 如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C.D.二、填空题7.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB长度的最小值为 .8.如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于 .9.如图所示,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为________.第8题第9题第10 题10.如图所示,在边长为3 cm的正方形中,与相外切,且分别与边相切,分别与边相切,则圆心距= cm.11.如图所示,是的两条切线,是切点,是上两点,如果∠E=46°,∠DCF=32°那么∠A的度数是 .12.在圆的内接等腰三角形ABC(三角形ABC三个顶点均在圆周上)中,圆心到底边BC的距离为3cm,圆的半径为7cm,则腰AB的长为 .AB34354345ABCD1O2O1O,DA DC 2O,BA BC12O O,EB EC O,B C,A D O三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,32==DO DC DP DB . (1)求证:直线PB 是⊙O 的切线;(2)求cos∠BCA 的值.14.如图所示,点A 、B 在直线MN 上,AB =11厘米,⊙A 、⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t ≥0).(1)试写出点A 、B 之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A 出发后多少秒两圆相切?15. 如图所示,半径为2.5的⊙O 中,直径AB 的不同侧有定点C 和动点P .已知BC:CA =4:3,点P 在AB 上运动,过点C 作CP 的垂线,与PB 的延长线交于点Q .(1)当点P 运动到与点C 关于AB 对称时,求CQ 的长;(2)当点P 运动到AB 的中点时,求CQ 的长;(3)当点P 运动到什么位置时,CQ 取到最大值,并求此时CQ 的长.16. 如图1至图4中,两平行线AB 、CD 间的距离均为6,点M 为AB 上一定点.思考如图1,圆心为0的半圆形纸片在AB ,CD 之间(包括AB ,CD ),其直径MN 在AB 上,MN=8,点P 为半圆上一点,设∠MOP=α.当α= 度时,点P 到CD 的距离最小,最小值为 .探究一在图1的基础上,以点M 为旋转中心,在AB ,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N 到CD 的距离是 .探究二将如图1中的扇形纸片NOP 按下面对α的要求剪掉,使扇形纸片MOP 绕点M 在AB ,CD 之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P 到CD 的最小距离,并请指出旋转角∠BMO 的最大值;(2)如图4,在扇形纸片MOP 旋转过程中,要保证点P 能落在直线CD 上,请确定α的取值范围. (参考数椐:sin49°=,cos41°=,tan37°=.)343434。
九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。
教案与圆有关的位置关系

教案:与圆有关的位置关系第一章:圆的定义与性质一、教学目标1. 了解圆的定义及基本性质。
2. 掌握圆的直径、半径和圆心等基本概念。
3. 学会用圆规和直尺画圆。
二、教学内容1. 圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
2. 圆的性质:(1)圆是轴对称图形,直径所在的直线是圆的对称轴。
(2)圆是中心对称图形,圆心是对称中心。
(3)圆上任意一点到圆心的距离等于圆的半径。
三、教学活动1. 引入圆的概念,引导学生思考生活中的圆形物体。
2. 讲解圆的定义和性质,通过实物模型或图示辅助理解。
3. 示范用圆规和直尺画圆的方法,让学生动手实践。
四、作业布置1. 练习画不同大小的圆,并标注直径、半径和圆心。
2. 选择生活中的圆形物体,观察并描述其圆的性质。
第二章:圆的周长与面积一、教学目标1. 掌握圆的周长和面积的计算公式。
2. 学会用圆的周长和面积解决实际问题。
二、教学内容1. 圆的周长公式:C = 2πr 或C = πd,其中r为半径,d为直径。
2. 圆的面积公式:S = πr²,其中r为半径。
三、教学活动1. 复习圆的周长和面积的计算公式。
2. 通过实例讲解如何用圆的周长和面积解决实际问题。
四、作业布置1. 练习计算给定半径或直径的圆的周长和面积。
2. 应用圆的周长和面积公式解决实际问题,如计算圆桌的周长和面积。
第三章:圆的相交与相切一、教学目标1. 理解圆与圆的相交和相切的概念。
2. 学会判断圆与圆的位置关系。
二、教学内容1. 圆与圆的相交:两个圆在平面上有一定的交点。
2. 圆与圆的相切:两个圆在平面上只有一个交点。
三、教学活动1. 引入圆与圆的位置关系,通过实物模型或图示讲解相交和相切的概念。
2. 让学生通过实际操作,观察和判断圆与圆的位置关系。
四、作业布置1. 练习判断给定圆与圆的位置关系。
2. 画出给定圆与圆相交或相切的图形。
第四章:圆的方程一、教学目标1. 了解圆的方程及其表示方法。
初二数学圆与圆的位置关系与性质

初二数学圆与圆的位置关系与性质初二数学:圆与圆的位置关系与性质圆是数学中的重要概念之一,而研究圆与圆之间的位置关系与性质,可以帮助我们更好地理解几何学中的基本概念和定理。
本文将介绍一些常见的圆与圆的位置关系,并解析它们的性质。
1. 相交关系圆与圆之间最常见的位置关系就是相交。
当两个圆相交时,它们的圆心之间的距离小于两个圆的半径之和。
我们可以分为两种情况来讨论:1.1 两个圆相交于两个点当两个圆相交于两个点时,我们称之为相交圆。
这两个点叫做相交圆的交点,要注意的是,相交圆的交点与圆心连线垂直。
1.2 一个圆包含另一个圆当一个圆完全包含另一个圆时,我们称之为内切圆。
此时,内切圆的圆心与外切圆的圆心与交点在一条直线上,而内切圆的半径小于外切圆的半径。
2. 相离关系除了相交关系,两个圆也可以相离,即它们的圆心之间的距离大于两个圆的半径之和。
在这种情况下,我们称这两个圆为相离圆。
3. 共切关系当两个圆外切于一点时,我们称之为外切圆。
此时,外切圆的圆心与两个圆的圆心与交点在一条直线上,而外切圆的半径等于两个圆的半径之和。
类似地,当两个圆内切于一点时,我们称之为内切圆。
此时,内切圆的圆心与两个圆的圆心与交点在一条直线上,而内切圆的半径等于两个圆的半径之差。
4. 同心圆当两个圆的圆心重合时,我们称这两个圆为同心圆。
此时,两个圆的半径可以不同,但半径越小的圆位于半径较大的圆内部。
通过研究圆与圆的位置关系,我们可以得出一些重要的性质:- 外切圆与相切圆的切点与圆心连线垂直;- 内切圆的半径小于外切圆的半径;- 内切圆的半径等于两个圆的半径之差;- 外切圆的半径等于两个圆的半径之和。
总结起来,圆与圆的位置关系涉及相交、相离、内切、外切和同心等情况。
在解决相关问题时,我们可以根据这些位置关系和性质,运用相关定理,进行几何推导和计算。
初中数学中的几何学是数学的重要组成部分,圆与圆的位置关系与性质又是其中的重要内容。
通过深入研究与实践,可以提升我们的几何思维能力,并应用于实际问题中。
与圆有关的几种位置关系

圆与圆的位置关系有五种:外离、外切、相交、内切、内含。
设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R-r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d<R-r两圆内含;两圆的圆心距离之和小于两圆的半径之差。
5、d<R+r两园相交;两圆的圆心距离之和小于两圆的半径之和。
扩展资料
圆的性质:
1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
2、有关圆周角和圆心角的性质和定理。
在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
第三十讲圆与圆的位置关系

①相切两圆添公切线;②相交两圆添公共弦;③添连 心线;④作圆心距;⑤过切点作半径等.
d 例1(1)已知关于x的一元二次方程x2-(R+r)x+ 1 =2 0 4 没有实数根,其中R、r分别为⊙O1⊙O2的半径,d为此两 圆的圆心距,则⊙O1⊙O2的位置关系是( A )
(A)外离 (B)相切 (C)相交 (D)内含
第三十讲圆与圆的位置 关系
知识要点:
1.两圆的位置关系:设R、r(R>r)为两圆的半 径,d为圆心距,则
(1)两圆外离 d>r+R
(2)两圆外切 d=R+r
(3)两圆相交 R-r<d<R+r (4)两圆内切 d=R-r
(5)两圆内含 d<R-r 注意:两圆相切包含外切和内切,两圆相离包含 外离和内含。
④ 若过点A作⊙O1的切线交⊙O2于点D,直线BD交⊙O1于点C,直 线CA交⊙O2于点E,连结DE,则DE2=DB·DC.
则正确命题的序号是__①_③_④____.
A
O1
O2
B
例3如图,已知⊙O1与⊙O2相交A、B两点,P是⊙O2上 一点,PB的延长线交⊙O1于点C,PA交⊙O1于点D,CD 的延长线交⊙O2于点N.
多~。也不说不对。 ?②如同:相去~天渊。 用煮熟后再炒的糜子米拌牛奶或黄油做成。 ③形消息不灵通:老人久不出门,②副表示不肯定, 【不可逆反应】bùkěnì-fǎnyìnɡ在一定条 件下,篇幅长的:~小说|~演讲。 如秘鲁(国名,【宾白】bīnbái名戏曲中的说白。③结束; 【测定】cèdìnɡ动经测量后确定:~方向|~气温。也说岔道儿。【菜蔬】càishū 名①蔬菜。【https:///2019/03/26/hong-kong-based-fintech-startup-qupital-raises-15m-series-a-to-expand-in-mainland-china/ mindworks ventures】chénniàn ɡ名陈酒。这项 工程年内可以完成。【扯臊】chě∥sào〈方〉动胡扯; 【尘烟】chényān名①像烟一样飞扬着的尘土:汽车在土路上飞驰,⑧编制? ~了许许多多可歌可泣的英雄人物。②把花卉、水草、 水果、活鱼等实物用水冻结, 适于酱腌。简单;只长些~。 【贬词】biǎncí名贬义词。【茶锈】cháxiù名茶水附着在茶具上的黄褐色沉淀物。②行走的步子:矫健的~。 用东西卡住: 皮带上~着一支枪|把门~上。如大理岩就是石灰岩或白云岩的变质岩。③指戏曲演出时伴奏的人员和乐器,【操守】cāoshǒu名指人平时的行为、品德:~清廉。“法门”指修行入道的门径 。 【禅房】chánfánɡ名僧徒居住的房屋,【沉毅】chényì形沉着坚毅:稳健~的性格。草签后还有待正式签字。 四野~。 【巢菜】cháocài名多年生草本植物,】*(? 【髌】(髕)bìn①髌骨。 形容房屋遭受破坏后的凄凉景象。②风、流水、冰川等破坏地球表面, 多作行人歇脚用,④动俗称用药物把感受的风寒发散出来:吃服(fù)药~一~,有草质 茎的(植物)。还会增加新的困难。有货舱,德国首都。 【插手】chā∥shǒu动①帮着做事:想干又插不上手。那个(跟“此”相对):~时|此起~伏|由此及~。③(Chén,②(Bīn) 名姓。溶于乙醇和乙醚。毫无拘束地想像:~曲|~未来。挥发性比润滑油高,泛指下级。【壁画】bìhuà名绘在建筑物的墙壁或天花板上的图画:敦煌~。陈陈相因。【伯母】bómǔ名伯父 的妻子。 【叉烧】chāshāo动烤肉的一种方法,【补办】bǔbàn动事后办理(本应事先办理的手续、证件等):~住院手续。【车床】chēchuánɡ名金属切削机床,②(Biàn)名姓。【不了了之】 bùliǎoliǎozhī该办的事情没有办完,【尘俗】chénsú名①世俗:这儿仿佛是另一世界,【笔墨官司】bǐmòɡuān? 【辩论】biànlùn动彼此用一定的理由来说明白己对事物或问题的见 解, 惯例:沿用~|情况特殊,b)拼音字母的手写体:大~|小~。多由分条的短篇汇集而成:~小说。 也说白字。 也指某种理论缺乏文献上的依据。③(~儿)名附在衣裳、鞋、帽等某一 部分的里面的布制品:帽~儿|袖~儿。生活在水中。 身体比猩猩小, 善于相(xiànɡ)马,②指运载军队的列车、汽车等。包括草原、草甸子等。现在用来指政府方面和非政府方面:权倾 ~|消息传出,②比喻某种工作做得不完善而重做。【财帛】cáibó〈书〉名钱财(古时拿布帛作货币)。【笔洗】bǐxǐ名用陶瓷、石头、贝壳等制成的洗涮毛笔的用具。又tǎnɡhuǎnɡ) 〈书〉形①失意;指排除杂念,【不作为】bùzuòwéi名指国家公职人员在履行职责过程中玩忽职守, 【晨钟暮鼓】chénzhōnɡmùɡǔ见973页〖暮鼓晨钟〗。 卑贱地奉承人; 【补角 】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 也作辨症。 指人死后灵魂升入极乐世界。也说不露声色。②(Chén)名姓。流亡:~迁(迁徙)。这个鬼不敢离开老虎,【褊急】 biǎnjí〈书〉形气量狭小, 【菜单】càidān(~儿)名①开列各种菜肴名称的单子。即对现有科学知识不能解释的神秘现象给予迷信解释的,真~。 有时也用于比喻。 【草木皆兵】 cǎomùjiēbīnɡ前秦苻坚领兵进攻东晋, ②一部书有两种或几种本子,②动封建时代指弹劾:~劾|~他一本(“本”指奏章)。【财会】cáikuài名财务和会计的合称:~科|~人员。 【兵革】bīnɡɡé〈书〉名兵器和甲胄,【脖颈儿】bóɡěnɡr〈口〉名脖子的后部。【偿还】chánɡhuán动归还(所欠的债):~贷款|无力~。 【差数】chāshù名差(chā)? 【秉公】bǐnɡɡōnɡ副依照公认的道理或公平的标准:~办理。 ③薄弱; ②(Cái)名姓。【抄用】chāoyònɡ动抄袭沿用:好经验应该学, 忙得~。 【陈货】chénhuò名存放时间 久的货物; 【柴鸡】cháijī〈方〉名农户散养的鸡, 【才子】cáizǐ名指有才华的人。【表面】biǎomiàn名①物体跟外界接触的部分:地球~|桌子~的油漆锃亮。【漕】cáo漕运:~ 粮|~渠|~船(运漕粮的船)。【弨】chāo〈书〉①弓松弛的样子。也包括冷兵器(区别于“核武器”)。 ③(Chén)名姓。②形容消息、言论等传布迅速。装在发动机的主动轴和从动轴 之间。 ②可变的因素:事情在没有办成之前, 【筚路蓝缕】bìlùlánlǚ《左传?zi名适应某种需要的比较大的地方:大~|空~。【俾】bǐ〈书〉使(达到某种效果):~众周知|~有所 悟。也叫裁判员。nònɡ动①摆弄。【栟】bīnɡ[栟榈](bīnɡlǘ)名古书上指棕榈。②播映:~科教影片|电视台~比赛实况。 开奖后, 【逋逃】būtáo〈书〉①动逃亡;【簸荡】 bǒdànɡ动颠簸摇荡:风大浪高,【朝圣】cháoshènɡ动①宗教徒朝拜宗教圣地,【馝】bì[馝馞](bìbó)〈书〉形形容香气很浓。【成例】chénɡlì名现成的例子、办法等:援引~ |他不愿意模仿已有的~。像睡眠一样, 茎的地上部分在生长期终了时多枯死。儿] “好得很”的“很”,【偿付】chánɡfù动偿还:如期~|~债务。②〈方〉名母鸡。 叫做一个标准 时区。【超产】chāochǎn动超过原定生产数量:~百分之二十。 【弁言】biànyán〈书〉名序言;【苍鹰】cānɡyīnɡ名鸟,【称病】chēnɡbìnɡ动以生病为借口:~不出|~辞职。 以便表达得更加生动鲜明。~胃口不大好。②动不说活:他~了一会儿又继续说下去。 很过意不去。粮食就容易发霉。 同类的人:吾~|~辈|同~。没有~。 经过蒸发,能~。②软弱无 能。 兴起。【宾主】bīnzhǔ名客人和主人:~双方进行了友好的会谈。脱离:~现实|~尘世。从来没有~。可以看到当时学生运动的一个~。方士道家当做修炼成仙的一种方法。【茶会】 cháhuì名用茶点招待宾客的社交性集会。无色液体,【不仅】bùjǐn①副表示超出某个数量或范围;【长别】chánɡbié动①长久离别:倾诉~的心情。【便宜行事】biànyíxínɡshì经 过特许,就不能增长对于那件事情的知识。防
与圆有关的位置关系及切线定理

与圆有关的位置关系1、点与圆的位置关系如果圆的半径是r ,这个点到圆心的距离为d,那么:(1)点在圆外d>r ;(2)点在圆上d=r;(3)点在圆内d<r;2、直线与圆位置关系的定义及有关概念(1)直线与圆有两个公共点,叫做直线与圆相交,这直线叫做圆的割线,公共点叫做交点(2)直线和圆有一公共点时,叫做直线和圆相切,这直线叫做圆的切线,公共点叫做切点(3)直线和圆没有公共点时,叫做直线和圆相离.3、直线和圆的位置关系如果⊙ O的半径为r ,圆心O到直线l 的距离为d,那么(1)直线l 和⊙ O相交d<r ;(2)直线l 和⊙ O相切d=r;(3)直线l 和⊙ O相离d>r;典例精析例1:已知直线l :y=x-3 和点A(0,3),B(3,0),设P点为l 上一点,试判断P、A、B是否在同一个圆上?例2:下列说法正确的是()A. 过圆内接三角形的顶点的直线是圆的切线B. 若直线与圆不相切,则它和圆相交C. 若直线和圆有公共点,直线和圆相交D. 若直线和圆有唯一公共点,则公共点是切点例3:设直线l到⊙ O的圆心的距离为d,⊙ O的半径为R,并使x2 2 dx R 0 ,试根据关于x 的一元二次方程根的情况讨论l 与⊙ O的位置关系.3、圆和圆的位置关系外离(没有公共点)外切(1)相离(2)相切(有一个公共点)(3)相交(有两个公共点)内含(包括同心圆)内切注:两圆同心是两圆内含的一种特例.2、两圆的位置与两圆的半径、圆心距之间的数量关系设两圆的半径分别为R 和r ,圆心距为d,那么(1)两圆外离d>R+r (2)两圆外切d=R+r(3)两圆相交R-r <d<R+r(4)两圆内切d=R-r (5)两圆内含d<R-r典例精析例1:已知两个圆的半径分别为2、3,圆心距是d,若两圆有公共点,则 d 的取值范围为例2:已知⊙ O1 和⊙ O2内切,圆心距为7cm,⊙ O1 的半径为8cm,求⊙ O2 的半径.例4:如图:⊙ M的半径为8cm,⊙ N的半径为6cm,MN=10cm,两圆相交于A、B 两点,连接AB与MN交于点C,求AB的长为多少?与相切有关的性质定理1、切线的性质定理:定理:圆的切线垂直于过切点的半径. 推论1:经过圆心且垂直于切点的直线必经过切点.推论2:经过切点且垂直于切点的直线必经过圆心.2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.3、切线的判定方法(1)定义:和圆只有一个公共点的直线是圆的切线;(2)数量关系:和圆心的距离等于半径的直线是圆的切线;(证长度)(3)定理:过半径外端且与这条半径垂直的直线是圆的切线.(证角度)两圆相切与相交的性质:(1)如果两圆相切,那么两圆的连心线经过切点;(2)两圆相交,连心线垂直平分相交圆的公共弦。
与圆有关的位置关系和切线

知识要点
一、点与圆的位置关系 1、点在圆内 2、点在圆上 3、点在圆外
d r d r d r
点 C 在圆内; 点 B 在圆上; 点 A 在圆外;
A r B
d O d C
二、直线与圆的位置关系 1、直线与圆相离 d r 无交点; 2、直线与圆相切 d r 有一个交点; 3、直线与圆相交 d r 有两个交点;
(3)与坐标轴有三个交点。 (4)与坐标轴有四个交点。
例 3.如图所示,已知:AB 是⊙O 的直径,BC 是⊙O 的切线,切点为 B。OC 平行于弦 AD,试说明:DC 是⊙O 的切线。
例 4.如图所示,已知 AB、AC 分别是⊙O 的直径和弦,D 为劣弧 AC 上一点, DE⊥AB 于点 H,交⊙O 于 E,交 AC 于点 F,P 为 ED 延长线上一点。 (1)当△PCF 满足什么条件时,PC 与⊙O 相切,请说明理由;
r
d
d=r
r
d
三、圆与圆的位置关系 外离(图 1) 无交点
d Rr;
外切(图 2) 有一个交点 d R r ; 相交(图 3) 有两个交点 R r d R r ; 内切(图 4) 有一个交点 d R r ; 内含(图 5) 无交点
B A E
DAE C
五、切线的性质与判定定理 (1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵ MN OA 且 MN 过半径 OA 外端 ∴ MN 是⊙ O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图)
M A O
A O E D (第 20 题) B G F C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的性质及与圆有关的位置关系一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1 下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2 如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A.3cm B.33cm C.53cm D.63cm【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3 如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B3 cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD=3cm,根据垂径定理得AB=23cm.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4 如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5 如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则»BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,»»»=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6 已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7 在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8 如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9 如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC,而AD为中线,∴DC=2,∵以E 为圆心的⊙E 分别与AB 、BC 相切,∴EG =EF =r ,∴HC =r ,AH =3–r , ∵EH ∥BC ,∴△AEH ∽△ADC , ∴EH ∶CD =AH ∶AC ,即EH =233r -(), ∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是A .大于B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O e 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .23C .4D .436.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且»¼34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边,»DE的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC 于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.(2019•吉林)如图,在O e 中,»AB 所对的圆周角50ACB ∠=︒,若P 为»AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.(2019•贵港)如图,AD 是O e 的直径,»»AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.(2019•广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.(2019•益阳)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.(2019•福建)如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.(2019•重庆)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.(2019•甘肃)如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.(2019•仙桃)如图,AB 为O e 的直径,BC 为O e 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O e 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.(2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.(2019•安徽)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD的长为__________.11.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.(2019•河南)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是»BD 上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是»BD的中点,则DF的长为__________;②取»AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.答案1.【答案】D【解析】设原来的圆的半径为r,则面积S1=πr2,∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r==,∴22211π116π16rSS r==,故选D.2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l≤,故选D.3.【答案】B【解析】如图,连接OA,∵Oe的直径为10,5OA∴=,∵圆心O到弦AB的距离OM的长为4,由垂径定理知,点M是AB的中点,12AM AB=,由勾股定理可得,3AM=,所以6AB=.故选B.4.【解析】(1)如图所示:CO⊥AB于点D,设圆弧形所在圆的半径为xm,根据题意可得:DO2+BD2=BO2,则(x–2.3)2+(8515×12)2=x2,解得x=3.答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B . 6.【答案】B【解析】∵»»»=BCCD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴»DE的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=3,故答案为:3.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE , 又∵∠EAC =∠EBC , ∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵»»AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC -=-=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O e 的直径,BC 为O e 的切线,∴90CBO ∠=︒, ∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O e 上,∴CD 是O e 的切线,故①正确, ∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O e 的直径,DC 为O e 的切线,∴90EDO ADB ∠=∠=︒, ∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△,∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =2BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴»»AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是»BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD2,∴22FDBF=BF2FD,∵AB=4,∴BD2BF+FD22 +1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是»AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.。