三角形的中位线教学设计
三角形的中位线教学设计(教案)

三角形的中位线教学设计(教案)一、教学目标1. 让学生理解三角形的中位线的概念,掌握三角形中位线的性质。
2. 培养学生运用三角形中位线解决实际问题的能力。
3. 培养学生合作学习、积极探究的精神。
二、教学内容1. 三角形中位线的定义2. 三角形中位线的性质3. 三角形中位线在几何中的应用三、教学重点与难点1. 教学重点:三角形中位线的概念及性质。
2. 教学难点:三角形中位线性质的证明及应用。
四、教学方法1. 采用问题驱动法,引导学生探究三角形中位线的性质。
2. 利用几何画板软件,动态展示三角形中位线的性质。
3. 开展小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入新课:通过复习三角形的基本概念,引入三角形的中位线。
2. 自主学习:让学生阅读教材,了解三角形中位线的定义。
3. 课堂讲解:讲解三角形中位线的性质,引导学生通过几何画板软件观察和验证。
4. 例题解析:分析三角形中位线在几何中的应用,解决实际问题。
5. 小组讨论:让学生分组讨论,探索三角形中位线的其他性质和应用。
7. 作业布置:布置有关三角形中位线的练习题,巩固所学知识。
六、教学评价1. 评价目标:检查学生对三角形中位线概念和性质的理解,以及运用三角形中位线解决实际问题的能力。
2. 评价方法:课堂问答:通过提问检查学生对三角形中位线概念的理解。
练习题:设计有关三角形中位线的练习题,评估学生掌握程度。
小组讨论:评估学生在小组讨论中的参与度和合作能力。
课后作业:通过作业提交评估学生的学习效果。
七、教学资源1. 教材:教师用书、学生用书。
2. 多媒体设备:计算机、投影仪、几何画板软件。
3. 教具:三角形模型、直尺、圆规。
4. 参考资料:相关论文、教案示例、在线资源。
八、教学进度安排1. 本节课预计用时:40分钟。
2. 教学环节时间分配:导入新课:5分钟自主学习:5分钟课堂讲解:15分钟例题解析:10分钟小组讨论:5分钟课堂小结:5分钟作业布置:5分钟九、教学反馈与改进1. 课堂问答环节要注意关注不同水平学生的理解情况,适时给予引导和帮助。
三角形的中位线教学设计(教案)

教案:三角形的中位线教学设计教学目标:1. 理解三角形的中位线的概念。
2. 学会如何作三角形的中位线。
3. 掌握三角形中位线的性质。
4. 能够运用三角形的中位线解决实际问题。
教学重点:1. 三角形的中位线的概念及性质。
2. 三角形的中位线的作法。
教学难点:1. 三角形的中位线的性质的理解和应用。
教学准备:1. 投影仪或白板。
2. 三角形模型或图片。
3. 彩色粉笔或markers。
教学过程:一、导入(5分钟)1. 引入话题:回顾上节课的内容,复习三角形的高的概念。
2. 提问:你们认为三角形的高有哪些性质?二、新课导入(15分钟)1. 介绍三角形的中位线的概念:a. 三角形的中位线是指从三角形的一个顶点出发,经过对边中点,到达另一个顶点的线段。
b. 三角形有三条中位线,它们相交于一点,称为中位线交点。
2. 演示如何作三角形的中位线:a. 通过三角形的一个顶点,作对边的中垂线。
b. 从对边的中点,作该顶点的对边的平行线。
c. 连接另一个顶点和对边中点,得到中位线。
三、性质探讨(15分钟)1. 三角形的中位线的性质:a. 中位线等于对边的一半。
b. 中位线平行于对边。
c. 中位线相交于一点,称为中位线交点。
2. 学生分组讨论,验证中位线的性质。
四、例题讲解(15分钟)1. 讲解例题:利用三角形的中位线解决实际问题。
2. 引导学生思考如何应用中位线的性质解决实际问题。
五、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 引导学生思考如何应用中位线的性质解决练习题。
教学反思:本节课通过引入三角形的中位线概念,讲解中位线的作法,探讨中位线的性质,例题讲解和课堂练习,使学生掌握三角形的中位线的相关知识。
在教学过程中,要注意引导学生主动思考,培养学生的观察能力和解决问题的能力。
六、练习巩固(10分钟)1. 出示练习题,让学生独立完成。
2. 引导学生运用三角形中位线的性质解决问题。
七、拓展与应用(10分钟)1. 引导学生思考:三角形的中位线在实际应用中的意义和作用。
三角形中位线教学设计

三角形中位线教学设计三角形中位线教学设计1 一、教学任务、目标1、认知目标(1)知道三角形中位线的概念,明确三角形中位线与中线的不同。
(2)理解三角形中位线定理,并能运用它进行有关的论证和计算。
(3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力。
2、能力目标引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。
3、德育目标对学生进行事物之间相互转化的辩证的观点的教育。
4、情感目标利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
5、教学重难点重点:三角形中位线定理难点:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用。
二、教学过程第一环节:创设情景,导入课题1、怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?操作:(1)剪一个三角形,记为△ABC(2)分别取AB,AC中点D,E,连接DE(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD、2、思考:四边形ABCD是平行四边形吗?3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?第二环节:教师讲授,传授新知内容:引入三角形中位线的定义和性质1、定义三角形的中位线,强调它与三角形的中线的区别。
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半第三环节:师生共析,证明定理第四环节:灵活运用,自我检测练一练:1、A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A,B间的距离:在AB外选一点C,连结AC和BC,并分别找出AC 和BC的中点M、N,如果测得MN=20m,那么A、B两点的距离是多少?为什么?2、已知:三角形的.各边分别为6cm,8cm,10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的。
最新三角形中位线定理的教学设计10篇

三角形中位线定理的教学设计10篇三角形中位线定理的教学设计10篇三角形中位线定理的教学设计(1)三角形中位线定理2、教学目标(一)知识目标(1)理解三角形中位线的概念(2)会证明三角形的中位线定理(3)能应用三角形中位线定理解决相关的问题;(二)过程与方法目标进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。
体会合情推理与演绎推理在获得结论的过程中发挥的作用。
(三)情感目标通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。
3、重点与难点重点:理解并应用三角形中位线定理。
难点:三角形中位线定理的证明和运用。
【教学方法】启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”【教学过程】(一)设景激趣,导入新课为了测量广场上的小假山外围圆形的宽(不能直接测量) 在平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出宽BC。
你知道这是为什么吗?设计意图:问题是一切学习探究的先父,教材中创设的问题情境难度较大,学生不容易突破。
这里创设了一个现实情景,在这里教师不急予让学生找出答案,而是让学生带着问题去学习。
为了让学生主动的获得新知,先让学生动手做以下一个环节的动手操作活动。
2、三角形中位线的定义:连接三角形两边中点的线段,叫做三角形的中位线如图,DE、EF、DF是三角形的3条中位线。
跟踪训练:①如果D、E分别为AB、AC的中点,那么DE为△ABC的;②如果DE为△ABC的中位线,那么 D、E分别为AB、AC的。
设计意图:学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。
(三)拼图活动、探索定理(用时大概5分钟)整个的拼图游戏我设计了以下两个问题:问题一:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?问题二:猜想得出平行四边形后,简述证明过程。
人教版数学八年级下册教案 18.1.3《 三角形的中位线 》

人教版数学八年级下册教案 18.1.3《三角形的中位线》一. 教材分析《三角形的中位线》是人教版数学八年级下册的教学内容,属于几何章节的第三节。
本节课的主要内容是让学生掌握三角形的中位线的性质,能够熟练运用中位线定理解决相关问题。
教材通过生动的插图和丰富的例题,引导学生探索三角形中位线的性质,培养学生观察、思考、解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平行线、全等三角形的性质等知识,具备了一定的几何思维和观察能力。
但部分学生对几何图形的直观理解仍有一定难度,对中位线定理的应用还不够熟练。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。
三. 教学目标1.让学生掌握三角形的中位线性质,理解中位线与三角形边长的关系。
2.培养学生观察、思考、解决问题的能力,提高学生的几何思维。
3.培养学生合作学习、积极探究的学习习惯。
四. 教学重难点1.三角形中位线的性质及其应用。
2.引导学生探索中位线与三角形边长的关系。
五. 教学方法1.采用问题驱动法,引导学生主动探究三角形中位线的性质。
2.利用直观教具,让学生观察、操作、思考,加深对中位线性质的理解。
3.采用小组讨论法,培养学生的合作意识和团队精神。
4.运用练习法,巩固所学知识,提高解题能力。
六. 教学准备1.准备三角形的中位线模型和教具,方便学生观察和操作。
2.准备相关练习题,用于课堂练习和巩固知识。
3.准备多媒体课件,辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示三角形的中位线模型,引导学生观察并提问:“你们认为三角形的中位线具有什么性质?”让学生思考并激发学习兴趣。
2.呈现(10分钟)教师简要介绍三角形的中位线性质,通过多媒体课件展示中位线的作法和性质。
引导学生理解中位线与三角形边长的关系。
3.操练(10分钟)教师引导学生分组讨论,每组尝试找出其他三角形的的中位线,并观察中位线与边长的关系。
教师巡回指导,解答学生的疑问。
9.5 三角形的中位线 苏科版八年级数学下册教案

9.5《三角形的中位线》教学设计一、教材分析《三角形的中位线》是新课标苏科版八年级(下)第九章《中心对称图形---平行四边形》的第五节的教学内容,教材安排一个学时完成。
本节教材是在学生学完了平行四边形和矩形,菱形,正方形内容之后,作为平行四边形知识的应用和深化所引出的一个重要性质定理,它揭示了线与线之间的位置关系,线段与线段间的数量关系,对进一步学习非常有用,尤其是在证明两直线平行和论证线段倍分关系时常常要用到.二、学情分析本章从内容上讲是《9.3》和《9.4》的继续,初二的学生对于推理证明的基本要求、基本步骤和方法已经初步掌握。
对于本节课三角形中位线定义的理解及完成大部分练习也不是难事,但在本节学习中学生容易出现以下问题:一是如何证明线段的倍分问题;二是应用中位线性质定理时怎样添加辅助线的问题.三、教学目标1.知识与能力:理解三角形中位线的概念,会证明三角形的中位线定理,能应用三角形中位线定理解决相关的问题;2.过程与方法:进一步经历“探索—猜想—证明”的过程,发展探究能力、推理论证的能力;培养数学应用意识3.情感态度价值观在命题的证明过程中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力;在定理的证明和应用过程中体归纳、类比、转化等数学思想方法。
四、教学重难点重点:三角形中位线性质定理证明及应用难点:用添加辅助线的方法来推证三角形中位线定理,了解证明线段倍分关系问题的基本要领.五、教学方法与学法指导对于三角形中位线定义的引入采用类比法,在此基础上,教师引导学生通过探索、猜测等自主探究的方法先获得结论再去证明。
在此过程中,注重对证明思路的启发和数学思想方法的渗透,使学生易于理解和接受。
六、教学准备:教师准备多媒体课件,三角板.七、教学过程(一)创设情境,导入新课1.从生活中的事例导入,A、B两地被建筑物隔开,如何测出A、B两地之间的距离?2.引入课题:三角形的中位线(板书课题)(设计意图:从生活的事例出发,激发学生的学习兴趣)(二)展示目标,自主学习认真研读课本86-87页,思考下列问题:1、回顾三角形中线的概念,在练习本上画出一个三角形,并画出它的中线。
初中数学初二数学下册《三角形的中位线》教案、教学设计

-请分析并解释:为什么三角形的中位线可以将三角形分成两个面积相等的小三角形?
4.拓展与创新题:提供一些难度较高的题目,供学有余力的学生挑战,激发他们的学习兴趣和创新能力。例如:
-如果一个三角形的两条中位线相等,那么这个三角形是什么类型的三角形?
-通过课堂问答、作业批改、小组评价等多种方式,全面了解学生的学习情况,为下一步教学提供依据。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生的生活经验和已有知识,创设一个与学生日常生活紧密相关的情境。例如,我会提出这样一个问题:“同学们,你们在体育课上是否玩过接力赛?在接力赛中,为什么运动员总是沿着一条直线跑,而不是曲线?”通过这个问题,引导学生思考直线的性质和作用。然后我会进一步提问:“如果我们在三角形中找到一些特殊的线段,这些线段是否也会具有一些特殊的性质呢?”这样的导入方式能够激发学生的好奇心,为接下来的新课学习做好铺垫。
-请尝试用不同的方法证明三角形中位线的性质。
5.反思与总结题:要求学生撰写学习反思,总结自己在学习三角形中位线过程中的收获和困惑,以及对未来学习的规划。
2.结合实际例题,通过直观演示和逐步引导,让学生体会中位线在实际问题中的应用。
-教师将选择与生活实际相关的问题,引导学生运用中位线进行解决。
-学生通过解决具体问题,领会数学知识在实际生活中的应用,培养学以致用的能力。
3.利用变式练习和拓展训练,提高学生解决问题的灵活性和创新性。
-教师将设计不同难度的练习题,以及具有挑战性的拓展题目,帮助学生巩固知识。
(三)学生小组讨论
在学生小组讨论的环节,我会将学生分成若干小组,每组学生需要共同探讨以下问题:1.如何使用尺规作图作出三角形的中位线?2.三角形的中位线有哪些性质?3.如何运用中位线的性质解决实际问题?我会鼓励学生在小组内积极发表自己的观点,倾听他人的意见,共同完成讨论任务。在这个过程中,我会巡回指导,关注每个小组的讨论进度,适时给予提示和建议。
三角形的中位线教学设计(教案)

教案:三角形的中位线教学设计一、教学目标1. 让学生理解三角形中位线的概念,掌握三角形中位线的性质。
2. 培养学生运用三角形中位线性质解决实际问题的能力。
3. 培养学生合作学习、积极探究的精神。
二、教学内容1. 三角形中位线的定义2. 三角形中位线的性质3. 三角形中位线在几何中的应用三、教学重点与难点1. 重点:三角形中位线的概念及性质。
2. 难点:三角形中位线性质的应用。
四、教学方法1. 采用问题驱动法,引导学生探究三角形中位线的性质。
2. 运用几何画板软件,直观展示三角形中位线的性质。
3. 组织小组讨论,培养学生合作学习的能力。
4. 结合实际例子,让学生运用三角形中位线性质解决问题。
五、教学过程1. 导入:通过复习三角形的相关知识,引入三角形中位线的话题。
2. 新课:讲解三角形中位线的定义,引导学生动手画出三角形的中位线。
3. 探究:让学生运用几何画板软件,观察三角形中位线的性质。
引导学生发现三角形中位线的平行且等于底边一半的性质。
4. 证明:讲解三角形中位线的性质证明过程,让学生理解并掌握证明方法。
5. 应用:结合实际例子,让学生运用三角形中位线性质解决问题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调三角形中位线的性质及应用。
7. 作业:布置相关练习题,让学生巩固三角形中位线的相关知识。
六、教学评价1. 通过课堂提问、作业批改等方式,了解学生对三角形中位线概念和性质的掌握情况。
2. 观察学生在小组讨论中的表现,评估学生的合作学习和探究能力。
3. 分析学生运用三角形中位线性质解决实际问题的能力,评价学生的学习效果。
七、教学反思1. 反思教学过程中的优点和不足,如教学方法、教学内容、教学组织等。
2. 根据学生的反馈,调整教学策略,提高教学效果。
3. 关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分的锻炼。
八、教学拓展1. 引导学生进一步研究三角形的中位线与其他几何元素的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的中位线教学设计
宣汉县第二中学徐霞
一、教材分析
《三角形的中位线》是北师大版九年级(上)第三章《证明三》的第一节,平行四边形的第3课时的教学内容,教材安排一个学时完成。
本节教材是在学生学完了三角形、四边形内容之后,作为三角形和四边形知识的应用和深化所引出的一个重要性质定理,它揭示了线与线之间的位置关系,线段与线段间的数量关系,对进一步学习非常有用,尤其是在证明两直线平行和论证线段倍分关系时常常要用到.由于在本章最后要探索特殊平行四边形的中点四边形,为了知识的连贯性和探索的完整性我将本节中探索一般四边形的中点四边形的形状调整到探索特殊平行四边形的中点四边形一起完成。
二、学情分析
本章从内容上讲是《证明一》和《证明二》的继续,初三的学生对于推理证明的基本要求、基本步骤和方法已经初步掌握。
对于本节课三角形中位线定义的理解及完成大部分练习也不是难事,但在本节学习中学生容易出现以下问题:一是如何证明线段的倍分问题;二是应用中位线性质定理时怎样添加辅助线的问题.
三、教学目标
1.理解三角形中位线的概念,会证明三角形的中位线定理,能应用三角形中位线定理解决相关的问题;
2.进一步经历“探索—猜想—证明”的过程,发展探究能力、推理论证的能力;培养数学应用意识
3.在命题的证明过程中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力;
4.在定理的证明和应用过程中体归纳、类比、转化等数学思想方法。
四、教学重难点
重点:三角形中位线性质定理证明及应用
难点:用添加辅助线的方法来推证三角形中位线定理,了解证明线段倍分关系问题的基本要领.
五、教学准备:教师准备多媒体课件,三角板.
六、教学过程
(一)创设情境,导入新课
1.多媒体展示右图,观察思考:
(1)图中的所有三角形有什么共同特征? (2)这个图是怎样画出来的? 2.教师给出三角形的中位线的概念:
连接三角形两边中点的线段叫做三角形的中位线
3.引入课题:为什么作三角形的中位线就能画出这样美丽的 图案?三角形的中位线有什么性质?本节课探索 ——三角形的中位线(板书课题) (二)合作交流,探索新知
1.操作:作△ABC ,并作△ABC 的中位线 问题1:一个三角形有几条中位线?
2.探究活动一:探索三角形中位线的性质:
(1)猜想:三角形的中位线与第三边有怎样的关系?(注意从位置关系和数量关系两个方面思考)(让学生大胆猜想,开拓思维)
(2)交流猜想(鼓励学生说出自己的猜想,并说出猜想的方法) ①三角形的中位线与第三边有怎样的关系? ②你是怎样猜想出这一结论的?
归纳猜想方法:①直观感觉 ②度量 ③推理 ④多画几个图观察 ⑤借助几何画板拖动原三角形的顶点观察(感受猜想策略的多样性)
教师用几何画板演示:
①拖动点A ,随着△ABC 形状的改变,DE 还是△ABC 的中位线吗?线段BC 的长度是否发生改变?DE 和BC 的关系还成立吗?
②拖动点B ,随着△ABC 形状的改变,DE 还是△ABC 的中位线吗?线段BC 的长度是否发生改变?DE 和BC 的关系还成立吗?
得出结论:
三角形的中位线平行于第三边,且等于第三边的一半。
(板书) (3)小组合作证明这一命题(教师巡视、指导) (4)交流证明方法
1)学生交流解题思路后,将证明过程用实物投影展示(引导学生找出证明过程的优点和不足,进一步规范文字命题的证明步骤)(若无实物投影,在了解学生的一些证明思路后
抽学生上黑板板演,与学生证明同步进行)
方法一:(由已知想可知)证△ADE ∽△ABC
A
D
E C
B
A
D
E C
B
方法二:“加倍法”①延长DE 至F,使EF=DE,连接FC.
②过点C 作AB 的平行线交DE 的延长线于点F.(如图1)先证△ADE ≌△CFE ,再证四边形BCFD 是平行四边形
③延长DE 至F,使EF=DE,连接FC.、DC 、AF.(如图2) 先证四边形ADCF 是平行四边形,再证四边形BCFD 是平行四边形
方法三:“折半法”①取BC 的中点F,连接EF 并延长至G ,使EG=FG ,连接AG (学
生课后完成证明)
②取BC 的中点F,连接EF ,过点A 作AG ∥BC 交FE 的延长线于点G (如图3) ③取BC 的中点F,连接EF 并延长至G ,使EG=FG ,连接AG 、GC 、AF (如图4) 2)归纳总结解题思路:
①证明线段平行:可以由角相等或互补得平行,由平行四边形得出平行
②证明一条线段等于另一条线段的一半,当根据条件和图形直接证明困难时可添加辅助线,通常采用“加倍法”(将较短线段延长一倍)或“折半法”(将较长线段折半)构造全等三角形、平行四边证明
(5)得出定理
把这一真命题作为一个定理——三角形中位线的性质定理。
分清定理的条件和结论,并用符号语言表示定理 ∵DE 是△ABC 的中位线
(或AD=BD,AE=CE 或D 为AB 的中点,E 为AC 的中点)
∴DE ∥BC, (三)练习巩固,深化拓展
1.如图,D 为AB 的中点,E 为AC 的中点
(1)若∠B=50°,则∠ADE= , ∠BDE= ;为什么? (2)若BC=12cm ,则DE= cm ,为什么?
2. 已知:如图,A,B 两地被池塘隔开,在没有任何测量工具的情况下,小明通过学习,估测
A
D
E C
B
DE=2
1
BC
A
D
E C B
E
A
B
C
D
F
图1
E
A
B
C D F
图2
A
B
C
D
E
F
G
图3
A
B
C
D
E F
G
图4
出了A,B 两地之间的距离:先在AB 外选一点C,然后步测出AC 、
的中点M,N,并测出MN 的长,由此他就知道了A,B 间的距离.
(1)你能说出其中的道理吗?
(2)若M
、N 之间有阻隔,你有什么解决的办法?
(注意:当有两边的中点时,可添加辅助线构造三角形中位线定理的基本图形解决问题)
3.如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点
(1)若AC=4cm,BC=6cm ,AB=8cm , 则△DEF (2)若△ABC 的周长为24,则△DEF 的周长=______(3)三角形三条中位线围成的三角形的周长与原 三角形的周长有什么关系?
(4)图中有哪几个平行四边形?请证明。
(5)图中的四个三角形有什么关系?请证明你的结论?
(你能把一个三角形分成四个全等的三角形吗?应怎样分?)
(6)三角形三条中位线围成的三角形的面积与原三角形的面积有什么关系?为什么? 4.探究活动二:探索梯形的中位线与梯形两底的关系(小组合作,若时间不够,课后探究)
(1)梯形中位线的定义:连接梯形两腰中点的线段叫做梯形的中位线. (2)探索:梯形的中位线与两底的关系. (四)归纳小结,反思提高 通过本节课的学习,你有什么收获?
你学到了哪些知识?你学会了哪些方法?你发现了哪些规律?
教师强调:1.三角形中位线定理是三角形中位线的性质定理,它揭示了三角形的中位线与第三边的位置关系和数量关系,利用中位线定理可以证明线段平行或倍分,两个结论可以分开使用,也可以联合使用;
2.证明线段倍分:可采用加倍法或折半法添加辅助线构造全等三角形、平行四边形证明;
3.若图中有两个中点,可设法构造三角形中位线定理的基本图形,利用三角形中位线定理解决问题。
(五)布置作业:课本习题3.3第2——5题 (六)板书设计:
三角形的中位线
定义:连接三角形两边中点的线段叫做三角形的中位线
N
B
C
A
C
定理:三角形的中位线平行于第三边,且等于第三边的一半。
∵DE 是△ABC 的中位线 练习区: (或AD=BD,AE=CE )
(或D 为AB 的中点,E 为AC 的中点)
∴DE ∥BC,
A D
E C
B
DE=
2
1
BC。