高二数学小周练

合集下载

2021年高二数学周练(9)新人教A版

2021年高二数学周练(9)新人教A版

2021年高二数学周练(9)新人教A 版一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈若,则下列不等式成立的是A. B.C. D.⒉在中,化简的结果是A. B.C. D.⒊在中,, 则是A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形 ⒋已知数列中,=2,=1,若为等差数列,则等于A .1B .C .D . 2⒌在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则的值为A. 14B. 18C. 24D. 32⒍若R ,给出下列条件:①;②;③;④;⑤.其中能推出“中至少有一个数大于1”的条件有A .1个B .2个C .3个D . 4个⒎某观察站与两灯塔、的距离分别为300米和500米,测得灯塔在观察站北偏东30,灯塔在观察站正西方向,则两灯塔、间的距离为A. 500米B. 600米C. 700米D. 800米⒏已知等比数列中,,,则前9项之和等于A .50B .70C .80D .90⒐在R 上定义运算:,若不等式对任意实数成立,则a 的取值范围为A .B .C .D . ⒑已知等差数列的前n 项和为,且,那么的值为A .B .C .D .⒒已知且,则的最小值为A. 18B.19C. 20D. 21⒓已知等比数列,,使nn a a a a a a a a 1111321321++++>++++ 成立的最大自然数是A.7B.8C.9D.10第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.⒔在数列中,,则此数列从第50项到第100项之和为 .⒕在中,已知关于的不等式:的解集为 .⒖在约束条件下,过点目标函数取得最大值10,则目标函数(写出一个适合题意的目标函数即可).⒗有穷数列的前项和现从中抽取某一项(不包括首项和末项)后,余下项的平均值是79,则这个数列的项数是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.⒘(本小题满分12分)在△ABC中,,cos C是方程的一个根,求△ABC周长的最小值.⒙(本小题满分12分)设等差数列的前项和为,已知,且,.⑴求公差的范围;⑵指出中哪一个值最大,并说明理由.⒚(本小题满分12分)已知不等式:的解集为.⑴求;⑵解关于的不等式:.⒛(本小题满分12分)等差数列{}中,=14,前10项和.⑴求;⑵将{}中的第2项,第4项,…,第项,…,按原来的顺序排成一个新数列,求此数列的前项和.21.(本小题满分12分)某养殖厂需定期购买饲料,已知该厂每天需要饲料200公斤,每公斤饲料的价格为1.8元,饲料的保管与其他费用为平均每公斤每天0.03元,购买饲料每次支付运费300元.⑴求该厂多少天购买一次饲料才能使平均每天支付的总费用最小;⑵若提供饲料的公司规定,当一次购买饲料不少5吨时其价格可享受八五折优惠(即原价的85%).问该厂是否考虑利用此优惠条件,请说明理由.22.(本小题满分14分)已知数列满足,且,.⑴求数列的前三项,,;⑵数列为等差数列,求实数的值;⑶求数列的前项和.P`35590 8B06 謆31571 7B53 筓Dm36929 9041 遁22726 58C6 壆25852 64FC 擼221386 538A 厊34697 8789 螉9U。

高二数学 周练习(含答案)

高二数学 周练习(含答案)

高二数学 周练习 命题: 审题:一、选择题1.函数f(x)在x=x 0处导数存在.若p:f '(x 0)=0;q:x=x 0是f(x)的极值点,则( )A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件 2.(理科)直线y=4x 与曲线y=x 3在第一象限内围成的封闭图形的面积为( ) A.22 B.42 C.2 D.4 (文科)函数f(x)=(x-3)e x 的单调递增区间是( )A. (-∞, 2)B. (0, 3)C. (1, 4)D. (2, +∞) 3.函数y=21x 2-ln x 的单调递减区间为( ) A. (-1, 1] B. (0, 1] C. [1, +∞) D. (0, +∞) 4.设函数f(x) =x2+ln x, 则( ) A. x=21为f(x)的极大值点 B. x=21为f(x)的极小值点 C. x=2为f(x)的极大值点 D. x=2为f(x)的极小值点5.已知函数()223a bx ax x x f +++=在x=1处有极值10,则()2f 等于( )A.11或18B.11C.18D.17或18 6.已知函数f(x) =x 3+ax 2+bx+c, 下列结论中错误的是( ) A. ∃x 0∈R, f(x 0) =0B. 函数y=f(x)的图象是中心对称图形C. 若x 0是f(x)的极小值点, 则f(x)在区间(- ∞, x 0)单调递减D. 若x 0是f(x)的极值点, 则f ' (x 0) =07.若函数y=f(x)的导函数在区间[a, b]上是增函数, 则函数y=f(x)在区间[a, b]上的图象可能是(8.设a ∈R,若函数y=e x +ax, x ∈R 有大于零的极值点, 则( )A. a<-1B. a>-1C. a>e 1- D. a<e1-9.若a>2,则函数()13123+-=ax x x f 在()2,0内零点的个数为( ) A.3 B.2 C.1 D.010.设函数f(x)在R 上可导,其导函数为f '(x) ,且函数f(x)在x= -2处取得极小值,则函数y=xf '(x)的图象可能是( )11.已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A.(2,+∞) B.(1,+∞) C.(-∞,-2) D.(-∞,-1) 12.已知f(x) =x 2+ax+3ln x 在(1, +∞)上是增函数, 则实数a 的取值范围为( )A. (-∞, -26]B.⎥⎦⎤⎝⎛∞-26, C. [-26, +∞) D. [-5, +∞) 二、填空题13.已知函数f(x)=x 3-12x+8在区间[-3, 3]上的最大值与最小值分别为M, m, 则M-m= .14.已知函数f(x)=axln x,x ∈(0,+∞),其中a 为实数, f '(x)为f(x)的导函数.若f '(1)=3,则a 的值为________.15.函数f(x)的定义域为R, f(-1)=2,对任意x ∈R, f '(x)>2,则f(x)>2x+4的解集为____ 16.已知曲线y=x+ln x 在点(1,1)处的切线与曲线y=ax 2+(a+2)x+1相切,则a=________. 三、解答题17.已知曲线C 1的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2. 正方形ABCD 的顶点都在C 2上,且A,B,C,D 依逆时针次序排列,点A 的极坐标为⎪⎭⎫ ⎝⎛3,2π ( I )求点A,B,C,D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.18. 设函数()R a x ax x x f ∈+++=,123( I )若x=1时,函数f(x)取得极值,求函数f(x)的图像在x= -1处的切线方程; (Ⅱ)若函数f(x)在区间⎪⎭⎫⎝⎛1,21内不单调,求实数a 的取值范围。

高二数学下学期周练一

高二数学下学期周练一

2012-2013学年度高二年级第二学期周练(一)理 科一、填空题:(本大题共10题,每小题5分,共50分)1.12(3x 展开式中1x -的项的系数为 . (用数字作答)2.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.3.若n的展开式中各项系数之和为64,则展开式中的常数项为 . 4.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为 .5.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)6.8名同学排成前后两排,每排4人.如果甲、乙两同学必须排在前排,丙同学必须排在后排,那么不同的排法共有_____________种(用数字作答). 7.若n ∈N *,且n 为奇数,则6n +C n 16n-1+…+C n n-16-1被8除所得的余数是 。

8.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人中至少有一人达标的概率是 .9.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为 . (用数字作答)10.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种(用数字作答). 二、解答题:(本大题共8题,共110分) 11.求8展开式中的所有的有理项.12.已知()()nmx x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求展开式中含2x 项的系数最小值13.某气象站天气预报的准确率为80%,计算(结果保留最简分数):(1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.14.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球. (I)求取出的4个球均为黑色球的概率;(II)求取出的4个球中恰有1个红球的概率;(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.15.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望3E ξ=,标准差V ξ(Ⅰ)求n ,p 的值并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.16.将编号为1、2、3、4的四个小球放入编号为1、2、3、4的四个盒子中,求满足下列条件的放法分别有多少种?(1)每个小球可任意放入其中的一个盒子里;(2)每盒至多放入一球;(3)恰好有一个空盒;(4)每个盒内放一个求,并且恰好有一个球的编号与盒子的编号相同;(5)把4个不同的小球换成4个相同的小球,且恰有一个空盒;(6) 把4个不同的小球换成20个相同的小球,要求每个盒内的球数不少于它的编号数.17.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望. 18.杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n行中从左到右第14与第15个数的比为32,求n的值;(3)求n阶(包括0阶)杨辉三角的所有数的和;(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k),(*Nkm∈的数学公式表示上述结论,并给予证明.。

高二数学周练答案

高二数学周练答案

高二数学周练1.设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >2},∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件.答案:C2.命题“若-1<x <1,则x 2<1”的逆否命题是( )A .若x ≥1或x ≤-1,则x 2≥1B .若x 2<1,则-1<x <1C .若x 2>1,则x >1或x <-1D .若x 2≥1,则x ≥1或x ≤-1解析:若原命题是“若p ,则q ”,则逆否命题为“若綈q 则綈p ”,故此命题的逆否命题是“若x 2≥1,则x ≥1或x ≤-1”.答案:D3.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 (特例法)当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=12<sin 60°=32,故sin α>sin β不成立;当sin α>sin β时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件. 答案 D 【点评】 本题采用了特例法,所谓特例法,就是用特殊值特殊图形、特殊位置代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.4.ax 2+2x +1=0至少有一个负的实根的充要条件是( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0 解析 (筛选法)当a =0时,原方程有一个负的实根,可以排除A 、D ;当a =1时,原方程有两个相等的负实根,可以排除B ,故选C.答案 C5.下列命题错误的是( ).A .命题“若m >0,则方程x 2+x -m =0有实数根”的逆否命题为:“若方程x 2+x -m =0无实数根,则m≤0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.对于命题p:∃x0∈R,使得x20+x0+1<0,则綈p:∀x∈R,均有x2+x+1≥0解析依次判断各选项,易知只有C是错误的,因为用逻辑联结词“且”联结的两个命题中,只要一个为假整个命题为假.答案 C6.设a,b是实数,则“a>b”是“a2>b2”的(D)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的(A) A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.下列叙述中正确的是(D)A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β9.设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则=0;命题q:若a∥b,b ∥c,则a∥c.则下列命题中真命题是(A)A.p∨q B.p∧q C.(﹃)p)∧(﹃q) D.p∨(﹃q)10.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是(A)A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根11.原命题为“若a n+a n+12<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A)A.真,真,真B.假,假,真C.真,真,假D.假,假,假12.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的(A)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件13.已知命题p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根.则下列命题为真命题的是(A)A.p∧﹃q B.﹃p∧q C.﹃p∧﹃q D.p∧q14.命题“∀x∈R,|x|+x2≥0”的否.定是(C)A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥015.命题“∀x∈R,x2≠x”的否定是(D)A.∀x∈/R,x2≠x B.∀x∈R,x2=x C.∃x0∈/R,x20≠x0D.∃x0∈R,x20=x0 16.设命题p:∀x∈R,x2+1>0,则﹃p为(B)A .∃x 0∈R ,x 20+1>0B .∃x 0∈R ,x 20+1≤0C .∃x 0∈R ,x 20+1<0D .∀x ∈R ,x 2+1≤017.函数f (x )=1log 2x -1的定义域为( C ) A .(0,2) B .(0,2] C .(2,+∞) D .[2,+∞)18.下列函数为奇函数的是( A )A .2x -12x B .x 3sin x C .2cos x +1 D .x 2+2x 19.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( D )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}20.奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( D )A .-2B .-1C .0D .121.设a =log 2π,b =log 12π,c =π-2,则( C )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C22.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( B )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]23.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( D )A .6+2 3B .7+2 3C .6+4 3D .7+4 324.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )的零点的区间是( C ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)25.已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( A )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 26.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( B )A .5B .8C .10D .1427.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( D )A .2B .-2 C.12 D .-1228.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( C )A .31B .32C .63D .6428.C [解析] 设等比数列{a n }的首项为a ,公比为q ,易知q ≠1,根据题意可得⎩⎪⎨⎪⎧a (1-q 2)1-q =3,a (1-q 4)1-q =15,解得q 2=4,a 1-q =-1,所以S 6=a (1-q 6)1-q =(-1)(1-43)=63. 29.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( A )A .n (n +1)B .n (n -1) C.n (n +1)2 D.n (n -1)229.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1). 30.掷两颗均匀的骰子,则点数之和为5的概率等于( B )A.118B.19C.16D.11231随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( C )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 232.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( B )A.15B.25C.35D.4533.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( B )A.45B.35C.25D.1534.若将一个质点随机投入如图1-1所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( B )A.π2B.π4C.π6D.π835.已知角α的终边经过点(-4,3),则cos α=( D )A.45B.35 C .-35 D .-4536.若tan α>0,则( C )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>037.将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( D )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称 38.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( A )A .①②③B .①③④C .②④D .①③39.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( C ) A.π2 B.2π3C .πD .2π 40.若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( C )A.π8B.π4C.3π8D.3π441.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( D )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定41.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.42.将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( B ) A .在区间⎣⎡⎦⎤π12,7π12上单调递减 B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 43.函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( B ) A.π2B .πC .2πD .4π 44.为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( A )A .向右平移π12个单位B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位 45.如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( C )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 46.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( D )A .-19 B.13 C .1 D.7247.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+x x 2+1(x >-2,a ∈R )有最大值,则f (x )∈B . 其中的真命题有________.(写出所有真命题的序号)47.①③④48.若不等式成立的充分不必要条件是,则实数的取值范围是______ 答案:⎥⎦⎤⎢⎣⎡-34,21 49.有三个命题:(1)“若x +y =0,则x ,y 互为相反数”的逆命题;(2)“若a >b ,则a 2>b 2”的逆否命题;(3)“若x ≤-3,则x 2+x -6>0”的否命题.其中真命题的个数为________(填序号).解析 (1)真,(2)原命题假,所以逆否命题也假,(3)易判断原命题的逆命题假,则原命题的否命题假.答案 150.定义:若对定义域D 上的任意实数x 都有f (x )=0,则称函数f (x )为D 上的零函数. 根据以上定义,“f (x )是D 上的零函数或g (x )是D 上的零函数”为“f (x )与g (x )的积函数是D 上的零函数”的________条件.解析 设D =(-1,1),f (x )=⎩⎪⎨⎪⎧ 0,x ∈-1,0],x ,x ∈,, g (x )=⎩⎪⎨⎪⎧ x ,x ∈-1,0],0,x ∈,,显然F (x )=f (x )·g (x )是定义域D 上的零函数,但f (x )与g (x )都不是D 上的零函数.答案 充分不必要13.设p :函数||()2x a f x -=在区间(4,+∞)上单调递增;:log 21a q <,如果“p ⌝”是真命题,“p 或q ”也是真命题,求实数a 的取值范围。

高二年级数学周练(7)

高二年级数学周练(7)

高二年级数学周练(7)姓名 班级满分150分,考试时间100分钟.一.选择题:本大题共有10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 1000º角的终边所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2.若角α的终边经过点P (2,3),则下列结论正确的是( )A .13132sin =α B .213cos =α C .13133sin =α D .32tan =α 3.下列四个关系正确的是( )A .21sin =α且21cos =α B .0sin =α且65.0cos =α C .1cos -=α且0sin =α D .1tan =α且1cos -=α4.在直径为10cm 的定滑轮上有一条弦,其长为6cm ,P 是该弦的中点,该滑轮以每秒5弧度的角速度旋转,则点P 在5秒内所经过的路程是( )A .10 cmB .20 cmC .50 cmD .100 cm 5.若24παπ<<,则下列不等式正确的是( )A .αααsin cos tan <<B .αααtan cos sin <<C .αααtan sin cos <<D .αααsin tan cos <<6.已知α是第二象限角,则ααααcos 1cos 1cos 1cos 1-+++-等于( ) A .αsin 2 B .αsin 2- C .ααsin cos 2 D .ααsin cos 2- 7.若将某正弦函数的图象向右平移2π后得到的图象的函数式是)4sin(π+=x y ,则原来的函数表达式是( )A .)4sin(π-=x y B .)43sin(π+=x y C .4)4sin(ππ-+=x y D .)2sin(π+=x y 8.已知)223(34)23tan(παπαπ<<=+,则)2cos(απ+的值是( ) A .43 B .53 C .21 D .52 9.设x x f 6sin)(π=,则)13()3()2()1(f f f f ++++ 的值为( ) A .21 B .23 C .231+ D .0 10.给出下列三个函数:①4sin x y =,∈x [0,π2];②4cos x y =,∈x [0,π2];③4tan x y =,∈x [0,π2).其中是增函数的为( )A .①②B .①③C .②③D .③二.填空题:本大题共有6小题,每小题6分,共36分.答案直接填在答题卷中相应横线上.11.已知81cos sin =αα,且24παπ<<,则ααsin cos -的值等于 . 12.把函数x y 2sin 2=的图象向左平移6π个单位,再向上平移3个单位,则得到的图象的函数解析式是 .13.已知点)cos (tan αα,P 在第二象限,则角α的终边在 象限.14.函数1)3cos(2--=ππx y 的定义域是 .15.化简370cos 110cos 10cos 10sin 212-++等于 .16.函数)4tan()(x x f -=π的单调减区间为 . 三.解答题:本大题共5小题,共64分.解答应写出文字说明,证明过程或演算步骤.17、(1)(6分)已知31cos =α,02<<-απ,求)tan()cos()tan()2sin(απααπαπ--++的值. (2)(6分)方程)sin(lg x x π=的实数根有 个 (直接写答案)18.(12分) 已知函数x xx f 2sin 1sin )(-=.(1)求该函数的定义域;(4分)(2)判断该函数的奇偶性并给出证明;(4分)(3)求该函数的单调增区间.(4分)19.(12分)如图,摩天轮的半径为40m ,点O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处.(1)试确定在时刻t (min )时点P 距离地面的高度;(5分)(2)在摩天轮转动的一圈内,有多长时间点P 距离地面超过70m ?(5分)20、(12分)已知βα,为锐角,且0)2(>-+πβαx ,试证明:2)sin cos ()sin cos ()(<+=x x x f αββα对一切非零实数x 恒成立21.(16分)已知函数)sin(ϕω+=x y (其中0>ω,22πϕπ<<-),给出以下四个论断:①它的图象关于直线12π=x 成轴对称图形;②它的图象关于点(3π,0)成中心对称图形;③它的最小正周期为π;④它在区间[6π-,0)上是增函数.以其中的两个论断作为条件,余下的两个论断作为结论,写出一个正确的命题,并证明其正确性.。

高二数学周练试卷

高二数学周练试卷

高二数学周练试卷考试范围:平面解析几何、空间向量与立体几何、排列组合二项式定理A .11312AB AC -+B .11412AB AC -+C .11412AB AC -+D .11312AB AC +-3.将4名医生,3名护士分配到名医生和1名护士,则不同的分配方法共有(A .64种4.与双曲线2212x y -=()A .2212y x -=5.如图所示,将四棱锥异色,如果只有4种颜色可供使用,则不同的染色方法种数为(A .1206.若直线2kx y --=围是()A .4,23⎛⎤⎥⎝⎦C .442,,33⎡⎫⎛--⎪ ⎢⎣⎭⎝ 7.若33333456C C C C +++A .68.已知0x y +=,则A .25二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列等式成立的是(A .!A !mn n m =C .121A A A n n n n n ++-=10.已知空间中AB = A .AB AC⊥三、填空题:本题共4小题,每小题5分,共20分.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.19.(1)已知2155C C 1m m m -=>(),求1236678C C C C m m m m ++++++的值(用数字作答).(2)解不等式:3221213A 2A 6A x x x +++≤+.20.四棱锥P ABCD -中,底面ABCD 为正方形,2PA AB ==,PA ⊥面ABCD ,,E F 分别为,PA PB 的中点,直线AC 与DF 相交于O 点.(1)证明://PB 平面DEF ;(2)求直线PC 与平面DEF 所成角的正弦值;(3)求平面AEO 与平面EOD 所成角的余弦值.21.用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复的数字:(1)六位奇数;(2)个位数字不是5的六位数;(3)比400000大的正整数.22.已知直线1y kx =+与抛物线C :28x y =交于A ,B 两点,分别过A ,B 两点作C 的切线,两条切线的交点为D .(1)证明点D 在一条定直线上;(2)过点D 作y 轴的平行线交C 于点E ,求ADE V 面积的最小值.参考答案:A,所以结合图象,可得(1,0)当直线与半圆相切时,可得所以实数k的取值范围为故选:A.7.C【分析】根据组合数的性质9.BC【分析】利用排列数与组合数公式计算可以判断13.11 1,,22⎛⎫- ⎪⎝⎭【分析】根据空间向量的坐标运算,结合投影向量的定义即可求解记直线2a yb =与y 轴的交点为由于()10,Fc -,()20,F c ,故则(0,0,0),(0,0,1),(0,0,2),A E P D 所以(1,0,1),(0,2,1),EF ED =-=- 设平面DEF 的法向量为(,,n x y =则00200n EF x z y z n ED ⎧⋅=-=⎧⎪⇒⎨⎨-=⋅=⎩⎪⎩,令1y =,则2x z ==,故(2,1,n =设直线PC 与平面DEF 所成角为设sin cos ,||n PC n PC n PC θ⋅===故直线直线PC 与平面DEF 所成角的正弦值为(3)由题知平面AEO 和平面APC 则(0,0,1),(2,2,0)AE AC ==,设平面平面AEO 的法向量(m = 所以111002200z m AE x y m AC ⎧=⋅=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩ 令11x =,则111,0y z =-=,所以(1,1,0)m =-,。

高二数学第六次周练(竞赛班)

高二数学第六次周练(竞赛班)

高二上学期数学第六次周练试题一、选择题(共10题;共50分)1.平面α 外有两条直线m 和n ,如果m 和n 在平面α 内的射影分别是m '和n ',给出下列四个命题:①m '⊥n '⇒m ⊥n ;②m ⊥n ⇒m '⊥n ';③m '与n '相交⇒m 与n 相交或重合;④m '与n '平行⇒m 与n 平行或重合,其中不正确的命题个数是( ) A.1 B.2 C.3 D.42. 命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题有( )A .0个B .2个C .3个D .4个3.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4. 已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点,则2ABF ∆是正三角形,则椭圆的离心率是( ) A22 B 12 C 33 D 135.在正方体1111ABCD A B C D -中,直线1BC 与平面1A BD 所成角的余弦值为( )A.24 B.23 C.33 D.326.已知α 是三角形的一个内角,且51cos sin =+αα,则方程x 2sin α -y 2cos α =1表示( )A.焦点在x 轴上的双曲线B.焦点在y 轴上的双曲线C.焦点在x 轴上的椭圆D.焦点在y 轴上的椭圆7.如图,在正四棱锥P -ABCD 中,23=PA AB ,E 是AB 的中点,G 是△PCD 的重心,则在平面PCD 内过G 点且与PE 垂直的直线有( ) A.0条 B.1条 C.2条 D.无数条第7题图 第9题图8.对于空间任意一点O 和不共线的三点A 、B 、C ,有如下关系:6OP →=OA →+2OB →+3OC →,则( )A .四点O 、A 、B 、C 必共面 B .四点P 、A 、B 、C 必共面 C .四点O 、P 、B 、C 必共面D .五点O 、P 、A 、B 、C 必共面9.如图,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足BP →=12BA →-12BC →+BD →,则2BP的值为( )A.32 B .2 C.10-24 D.9410. 若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,则m n的值是( )2.23.22.292. D C B A二、填空题(共4题;共20分)11. 已知向量k -+-==2),2,0,1(),0,1,1(且互相垂直,则实数k 的值是 .12.已知空间四边形OABC ,如图所示,其对角线为OB ,A C .M ,N 分别为OA ,BC 的中点,点G在线段MN 上,且GN MG 2=,现用基向量,,表示向量,并设z y x ++=,则x ,y ,z 之和为______.13.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率 为1的直线被椭圆截得的弦长为3144,则点A 的坐标是______. 14. 已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为___.高二上学期数学第六次周练试题(高二(19)班)姓名 学号 得分 . 题12 3 4 5 6 7 8 9 10 总计 答11、__ __ . 12、_ __ _____. 13、___ _____ 14、____ ____.三、解答题(共2题;共30分)15.设命题P :2",2"x R x x a ∀∈->,命题Q :2",220"x R x ax a ∃∈++-=;如果“P 或Q ”为真,“P 且Q ”为假,求a 的取值范围。

高二数学 周测试卷(含答案解析)

高二数学  周测试卷(含答案解析)
(1)求证 ;
(2)求二面角 的平面角的余弦值。(理科做)
求点F到平面ABE的距离。(文科做)
21.已知椭圆 的,离心率为 , 是其焦点,点 在椭圆上。
(Ⅰ)若 ,且 的面积等于 。求椭圆的方程;
(Ⅱ)直线 交椭圆于另一点 ,分别过点 作直线 的垂线,交 轴于点 ,
当 取最小值时,求直线 的斜率。
22.已知函数
(1)曲线 在点 处的切线方程为 ,求 的值;
(2)当 时, ,试求 的取值范围。
参考答案及评分标准
一、选择题:共12小题,每小题5分,共60分.
题号
1
2
3
4
5
6
7
8
9
10
11
12
选项
B
B
A
A
D
A
A
D
B
C
D
C
1.选B.【解析】∵ , ,∴ ,故选B.
2.选B.【解析】∵ ,对应的点为 在第二象限,故选B.
……………………………………5分
(Ⅱ)
函数的图象为:
当 时, ,依题意, ,则
∴ 的取值范围是 …………………………………………………………10分
18.(Ⅰ)∵ 由正弦定理得

即 ,易知 ,且 ,
上式两边除以 ,得 ……………………………………6分
(Ⅱ)∵ ,∴ ,
由 ,又 , ,得

∴ …12分
19.(12分)
二、填空题共4小题,每小题5分,共20分.
13.填 .【解析】如图可知 的最小值是 .
14.填 .【解析】由题意得四面体 是底面边长为 的正三角形,侧棱 垂直底面,且 , , ,则外接球球心在过底面中心垂直于底面的垂线上,且到底面的距离等于 的一半,∴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档