定比分点坐标公式
定比点差法及其应用解说

定比点差法及其应用解说一、定比分点若,则称点为点、的定比分点.当时,点在线段上,称为内分点;当()时,点在线段的延长线上,称为外分点.定比分点坐标公式:若点,,,则点的坐标为二、点差法点差法其实可以看作是方程的相减,是对方程的一个巧妙的处理。
若点在有心二次曲线上,则有两式作差得此即有心二次曲线的垂径定理,可以解决与弦的中点相关的问题.1、弦的中点点差法一个妙用:例1 已知椭圆,直线交椭圆于两点,为的中点,求证:为定值。
分析用常规方法设直线也可以解决,但是计算就很繁杂,在这里使用点差法。
解设,,在椭圆上:,作差得:即:,因为所以,为定值。
以上结论与弦的中点有关,也称为垂径定理。
考虑当椭圆为圆的时候,,则,,正好也符合圆的“垂径定理”。
在双曲线中同样有类似的结论,但定值为,在这里就不再推导了。
2、弦上的定比分点当弦上的点不再是中点时,就成了定比分点:设,,,则点坐标可以表示为:,证明设,,化简可得:,同理这时候就出现了这样形式的式子。
如果再凑出,可能大家就会有点感觉了:可以将椭圆的方程乘上一个再作差,得到这样的式子。
因此我们想到了“定比点差法”这样的技巧。
例2 已知椭圆,在椭圆外,过作直线交椭圆于两点,在线段上且满足:,求证:点在定直线上。
分析按照以上思路,要出现和这样的式子,很容易想到设的坐标,再表示出的坐标。
解设,,,则,结合图形得:则,在椭圆上:①,②得:即,所以在定直线上。
下面介绍定比点差法:若点在有心二次曲线上,则有两式作差得这样就得到了例7、过异于原点的点引椭圆的割线,其中点在椭圆上,点是割线上异于的一点,且满足.求证:点在直线上.证明:直接运用定比点差法即可.设,则有,设,则有又因为点在椭圆上,所以有两式作差得两边同除以,即可得到命题得证.例8、已知椭圆,过定点的直线与椭圆交于两点(可以重合),求的取值范围.解析:设,,则.于是,于是又因为点在椭圆上,所以有两式相减得将(1)代入(2)中得到由(1)(3)解得从而解得的取值范围为,于是的取值范围为.例9、设、为椭圆的左、右焦点,为椭圆上任意一点,直线分别交椭圆于异于的点、,若,,求证:.证明:设,,,则于是有又由点在椭圆上得到两式相减得从而有结合(4)式可解得同理可得结合(5)式得到于是有整理得,命题得证.例10、已知椭圆,点,过点作椭圆的割线,为关于轴的对称点.求证:直线恒过定点.解析:因为三点共线,三点也共线,且三点都在椭圆上,我们用定比点差法去解决这个问题.设,,则,设与轴的交点为,,,则于是有由点在椭圆上得两式相减得将(2)代入(3)得。
5-4新田中学-线段的定比分点与平移

π π ∴y-2=sin[(x-4)+4]-2, 化简,得 y=sinx. ∴原来函数的解析式为 y=sinx.
→,当P1Q=-3P2Q即 λ=3 时 xQ=-1+2λ=5,yQ= → → 3P2 Q 4
1+λ -5+4λ 7 5 7 =4,∴Q 点坐标为(4,4). 1+λ → → 当P1Q=3P2Q即 λ=-3 时 -1+2λ 7 -5+4λ 17 xQ= =2,yQ= =2. 1+λ 1+λ 7 17 ∴Q 点坐标为(2, 2 ).
启示:函数与方程思想贯穿于整个中学数学, 则向量模的关系转化为解不等式,再由解不 等式探求不等式成立的条件,再由a·e=1,
●回归教材 1.已知点 P 分有向线段P→ 2的比为 λ,则下列结论中正 1P 确的是 A.λ 可以是任意实数 B.λ 是不等于零的实数 C.当 λ<-1 时,点 P 必在P→ 2的延长线上 1P D.当-1<λ<0 时,点 P 在P→ 2的延长线上 1P ( )
-5+4λ1 解析:(1)由已知 1= 解得 λ1=2, 1+λ1 -1+2λ1 x= =1. 1+λ1 → =2PP2得P1P=2(PP1+P→ 2)整理得P→ 1 =- 3 → → → (2)由P1P 1P 2P 2 → .∴λ2=-3. P1P 2
→ → → → → → → (3)由P1Q∥P2Q且|P1Q|=3|P2Q|知P1Q=3P2Q或P1Q=-
则点 P 分P→ 2所成的比是________. 1P → 2的延长线上,则P1P=3. → 解题思路:如图,P 在P1P
线段的中点坐标公式

的分点C的坐标
2
2 1 (5)
解
x 2 1 1
4ቤተ መጻሕፍቲ ባይዱ (5) 1 21 3
2
y
3 1
1 4 2 1
64 2 1
2 3
2
因此分点C的坐标为(-
1 , 3
2) 3
2、线段的定比分点坐标公式
x x1 x2 , y y1 y2 ( 1)
1
1
练习 1、 设点C分线段AB成定比 ,求分点C的坐标:
设D,E,F分别是边BC,AC,AB的中点,求点D,E,F的坐标
解 点D的坐标为 (2, 3) 2
点E的坐标为 (1 , 1) 2
点F的坐标为 ( 1 , 1 ) 22
1、线段的中点坐标公式: x x1 x2 y y1 y2
2
2
例2 已知线段AB的中点M的坐标为(3, 1 ) ,端点A的坐标为(4,2)
使得 | AC |
1
y1) (x2
| CB |
,
y2 ) ,设C是线段AB上的一点,
试问:点C的坐标是多少?
2
y
.B
A.
C.
e2
o e1
x
思考:
如图,已知线段AB的两个端点A,B的坐标
分别为, (x1,
使得 | AC |
1
y1) (x2
| CB |
,
y2 ) ,设C是线段AB上的一点,
试问:点C的坐标是多少?
2
y
.B
C.
A.
e2
o e1
x
2、线段的定比分点坐标公式
(1)定比分点 在直线AB上任取一点C,使得AC λ CB ,我们称
解析几何之定比点差法

解析几何之“定比点差法”文章来源: 作者:意琦行 时间:2016年1月5日 介绍定比点差法之前,先介绍一些解析几何中的基础知识: 一、定比分点若λMB ⃗⃗⃗⃗⃗⃗ ,则称点M 为点A 、B 的λ定比分点. 当λ>0时,点M 在线段AB 上,称为内分点; 当λ<0(λ≠−1)时,点M 在线段AB 的延长线上,称为外分点. 定比分点坐标公式:若点A(x 1,y 1),B(x 2,y 2),AM ⃗⃗⃗⃗⃗⃗ =λMB ⃗⃗⃗⃗⃗⃗ ,则点M 的坐标为M (x 1+λx 21+λ,y 1+λy21+λ).二、点差法若点A(x 1,y 1),B(x 2,y 2)在有心二次曲线x 2a 2±y 2b 2=1上,则有x 12a 2±y 12b 2=1,x 22a 2±y 22b2=1, 两式作差得(x 1+x 2)(x 1−x 2)a 2±(y 1+y 2)(y 1−y 2)b 2=0.此即有心二次曲线的垂径定理,可以解决与弦的中点相关的问题.下面介绍定比点差法:若点A(x 1,y 1),B(x 2,y 2)在有心二次曲线x 2a 2±y 2b 2=1上,则有x 12a 2±y 12b 2=1,λ2x 22a 2±λ2y 22b2=λ2 两式作差得(x 1+λx 2)(x 1−λx 2)a 2±(y 1+λy 2)(y 1−λy 2)b2=1−λ2. 这样就得到了1a 2⋅x 1+λx 21+λ⋅x 1−λx 21−λ±1b 2⋅y 1+λy 21+λ⋅y 1−λy 21−λ=1. 例1 过异于原点的点P(x 0,y 0)引椭圆x 2a 2+y 2b 2=1(a >b >0)的割线PAB ,其中点A,B 在椭圆上,点M 是割线PAB 上异于P 的一点,且满足AM MB =AP PB.求证:点M 在直线x 0x a 2+y 0y b 2=1上.证明 直接运用定比点差法即可.设AP⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ ,则有AM ⃗⃗⃗⃗⃗⃗ =−λMB ⃗⃗⃗⃗⃗⃗ ,设A(x 1,y 1),B(x 2,y 2),M(x M ,y M ),则有 x 0=x 1+λx 21+λ,y 0=y 1+λy 21+λ;x M =x 1−λx 21−λ,y M =y 1−λy 21−λ.又因为点A,B 在椭圆上,所以有x 12a 2+y 12b 2=1,λ2x 22a 2+λ2y 22b2=λ2 两式作差得(x 1+λx 2)(x 1−λx 2)a 2+(y 1+λy 2)(y 1−λy 2)b2=1−λ2. 两边同除以1−λ2,即可得到x 0x M a 2+y 0y M b 2=1.命题得证.练习1 (2008高考数学安徽卷理科)设椭圆C :x 2a2+y 2b 2=1(a >b >0)过点M(√2,1),且焦点为F 1(−√2,0). (1)求椭圆的方程;(2)过点P(4,1)的动直线l 与椭圆C 相交于不同点A,B 时,在线段AB 上取点Q ,满足|AP|⋅|QB|=|AQ|⋅|PB|,证明:点Q 总在某定直线上. 答案 (1)x 24+y 22=1;(2)点Q 在直线2x +y −2=0上. 例2 已知椭圆x 29+y 24=1,过定点P(0,3)的直线与椭圆交于两点A,B (A,B 可以重合),求PAPB的取值范围.解:设A(x 1,y 1),B(x 2,y 2),AP ⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ ,则PAPB =−λ.于是P (x 1+λx 21+λ,y 1+λy 21+λ)=(0,3),于是x 1+λx 2=0,y 1+λy 2=3(1+λ) (1)又因为点A,B 在椭圆上,所以有x 129+y 124=1,λ2x 229+λ2y 224=λ2,两式相减得(x 1+λx 2)(x 1−λx 2)9+(y 1+λy 2)(y 1−λy 2)4=1−λ2.(2)将(1)代入(2)中得到y 1−λy 2=43(1−λ).(3)由(1)(3)解得y 1=3(1+λ)+43(1−λ)2=136+56λ∈[−2,2].从而解得λ的取值范围为[−5,−15],于是PAPB 的取值范围为[15,5]. 练习2 设D(0,16),M,N 是椭圆x 225+y 216=1上的两个动点(可以重合),且DM ⃗⃗⃗⃗⃗⃗⃗ =λDN⃗⃗⃗⃗⃗⃗ ,求实数λ的取值范围. 答案 [35,53].例3 设F 1(−c,0)、F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上任意一点,直线PF 1,PF 2分别交椭圆于异于P 的点A 、B ,若PF 1⃗⃗⃗⃗⃗⃗⃗ =λF 1A ⃗⃗⃗⃗⃗⃗⃗ ,PF 2⃗⃗⃗⃗⃗⃗⃗ =μF 2B ⃗⃗⃗⃗⃗⃗⃗ ,求证:λ+μ=2⋅a 2+c 2a 2−c 2.证明 设P(x 0,y 0),A(x 1,y 1),B(x 2,y 2),则F 1(x 0+λx 11+λ,y 0+λy 11+λ),F 2(x 0+μx 21+μ,y 0+μy 21+μ).于是有x 0+λ x 1=−(1+λ )c,y 0+λ y 1=0;(4) x 0+μ x 2=(1+μ )c,y 0+μ y 2=0.(5)又由点P,A 在椭圆上得到x 02a2+y 02b 2=1,λ2x 12a 2+λ2y 12b 2=λ2,两式相减得(x 0+λx 1)(x 0−λx 1)a 2+(y 0+λy 1)(y 0−λy 1)b2=1−λ2.(6) 从而有 λx 1=a 2c(λ−1).结合(4)式可解得 2x 0=a 2c(λ−1)−c(1+λ).同理可得 x 0−μx 2=a 2c (1−μ).结合(5)式得到 x 0=a 2c(1−μ)+c(1+μ).于是有 a 2c (λ−1)−c(1+λ)=a 2c(1−μ)+c(1+μ).整理得λ+μ=2⋅a 2+c 2a 2−c 2, 命题得证.练习3 已知过椭圆x 22+y 2=1的左焦点F 的直线交椭圆于A,B 两点,且有FA ⃗⃗⃗⃗⃗ =3BF ⃗⃗⃗⃗⃗ ,求点A 的坐标. 答案 A(0,±1).定比点差法实际上是直线的参数方程的变异形式,只不过将其中的t 变作了λ,也就是说只要是共线点列的问题都可以在考虑运用直线的参数方程的同时考虑定比点差法.定比点差法在处理圆锥曲线上过定点的直线的证明题时往往可以起到简化运算的作用.但定比点差法无法应用于抛物线,并且它采用的参数λ在解析几何问题中并不通用,在求解具体的斜率、弦长与面积时往往会引起运算上的麻烦(当然,求坐标还是很简便的),所以并不是所有的共线问题都适用用定比点差法解决.。
定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用河北 陈庆新许多同窗可能已经能够熟练地应用有向线段的定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 及定比的坐标公式λ=x -x 1x 2-x ,求解有向线段的定比分点坐标及定点分有向线段所成的比了.事实上用这两个公式,还可巧妙地用于解决其它一些问题.如用得好,会使解题进程显得别具一格,简捷明快,充分展现咱们思维的独创性.下面举例说明其解题中的应用. 一、在几何问题中的应用(一)关于公式的正用例1. 证明:三角形内角平分线分其对边之比等于夹那个角的两边长度之比.证明:以ΔOAB 的极点O 为原点,∠AOB 的平分线OC 因此直线为x 轴,成立平面直角坐标系如下图,设|OA|=m ,|OB|=n ,∠AOC =∠COB =θ,那么A(m cos θ,m sin θ),B(n cos θ,-nsin θ),设C 点分−→−AB 的所成的比为λ,由定比分点的坐标公式:m sin θ-λn sin θ1+λ=0,解之得,λ=m n ,即|AC||CB|=|OA||OB|.点评:本例的结论在解题中有着很多的应用。
请看下面的例子。
例2.已知△ABC 三个极点的坐标别离为A(-1,1),B(3,1),C(2,5),角A 的内角平分线交对边于D ,那么向量AD −−→的坐标为 .解析:容易计算|AB −−→|=4,|AC −−→|=5。
依照三角形内角平分线的性质知:ABAC=BD DC ,于是可知点D 分有向线段BC −−→所成的比为45,从而由定比分点坐标公式可求得点D 的坐标(239,259),于是AD −−→=(329,169).例3.已知三点A(1,2)、B(4,1)、C(3,4),在线段AB 上取一点P ,使过P 且平行于BC 的直线把△ABC 的面积分成4∶5两部份,求点P 的坐标.A C OBx y解析:由题意得:ABCAPQ S S ∆∆=2⎪⎭⎫ ⎝⎛AB AP =49.因此AP AB =23,即−→−AP =2−→−PB ,λ=2,设P(x ,y ),那么x =1+2×41+2=3,y =2+2×11+2=43.因此P 点的坐标为(3,43).例4.已知在△ABC 中,BC =a ,CA =b ,AB =c ,且A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),求△ABC 的内心坐标.解析:设I 为△ABC 的内心,AD 为∠A 的平分线,那么AB AC =BD DC =cb ,∴点D 分−→−BC 所成的比为cb ,∴由定比分点的坐标公式可求得D 点的坐标:x D =x 2+c b ×x 31+c b=bx 2+cx 3b +c,y D =by 2+cy 3b +c.又AI ID =AB BD =AC CD ,∴AI ID =AB +AC BD +CD=b +ca ,即点I 分−→−AD 所成的比b +c a . ∴xI=acb c b cx bx a c b x ++++⋅++1321=ax 1+bx 2+cx 3a +b +c ,同理yI=ay 1+by 2+cy 3a +b +c .∴△ABC 的内心坐标为(ax 1+bx 2+cx 3a +b +c ,ay 1+by 2+cy 3a +b +c).(二)公式的逆用例5.已知一次函数y =-mx -2图象与线段AB 有交点,假设A(-2,3)、B(3,2),求实数m 的取值范围.解析:设一次函数的图象直线l 交AB 于点P(x ,y )且−→−AP =λ−→−PB (λ≥0),当λ=0时,直线过A 点,那么由定比分点坐标公式知⎪⎪⎩⎪⎪⎨⎧++=++-=λλλλ123132y x ,又因P 在直线l 上,故m ·-2+3λ1+λ+3+2λ1+λ+2=0,解得:λ=2m -53m +4≥0,从而m ≥52或mACBDI<-43.又当点P 与点B 重合时符合题意,因此将B(3,2)代入直线l 的方程,求得m =-43.故m 的取值范围为m ≥52或m ≤-43.本例能够推行为:已知定点P 1(x 1,y 1)、P 2(x 2,y 2)及直线l :A x +B y +C=0,设直线l 与直线P 1P 2相交于点P ,求证:点P 分有向线段12P P −−→所成的比λ=-A x 1+B y 1+CA x 2+B y 2+C.略解:设点P 分有向线段12P P −−→所成的比λ,由定比分点坐标公式可求得点P的坐标为:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,将点P 的坐标代入直线l 的方程:A 121x x λλ+++B 121y y λλ+++C=0,整理得:(A x 1+B y 1+C )+λ(A x 2+B y 2+C)=0,解之得:λ=-A x 1+B y 1+CA x 2+B y 2+C .点评:假设利用那个结论来解答一下例5,就显得超级简捷:设点P(x ,y )分有向线段AB −−→所成的比为λ,则λ=-A x 1+B y 1+CA x 2+B y 2+C =--2m +3+23m +2+2=2m -53m +4,因为P 为内分点,因此λ=2m -53m +4≥0,解之得:m ≥52或 m <-43,当直线l 过点B时,有m =-43.综上知:m ≥52或m ≤-43. 二、在代数问题中的应用 (一)、解不等式例6.解不等式2-x1+3x≥1.解析:令y =2-x 1+3x -1≥0,那么x =1-y 4+3y=14+3y 4×(-13)1+3y 4,且y ≥0,于是此问题可转化为:数轴上以P 1(14)为起点,P 2(-13)为终点,定比λ=34y ≥0时,求分点P 的坐标x 的范围问题.由λ=34y ≥0知点P 为有向线段−→−21P P 的内分点,或与点P 1重合,故应有-13<x ≤14.例7. 解不等式1<x 2-2x -1x 2-2x -2<2.解析:在数轴上取P 1,P ,P 2点依次表示1,x 2-2x -1x 2-2x -2,2,由−→−P P 1=λ−→−2PP 得λ=1x 2-2x -3,因为P 内分有向线段−→−21P P ,因此λ>0,即x 2-2x -3>0,解之即得原不等式的解集为:{x |x <-1或x >}3. (二)、求函数的值域例8. 求函数y =1+3x +11-x +1的值域.解析:令λ=-x +1,那么λ≤0,依题意有y =-1+λ(-3)1+λ,依照上式可知λ为点P(y )分有向线段−→−21P P 所成的比,其中P 1(1)、P 2(-3),于是函数y 为分点P 的坐标,由定比的坐标公式:λ=x -x 1x 2-x =y -1-3-y≤0,解之得y <-3或y ≥1.即原函数的值域为(-∞,-3)∪[1,+)∞.例9.求函数y =e x -1e x +1的反函数的概念域.解析:问题等价于求原函数的值域.令λ=e x >0,P 1(-1),P(y ),P 2(1),那么y =e x -1e x +1=-1+e x ·11+e x =-1+λ1+λ,∵λ>0,∴P 为有向线段−→−21P P 的内分点,∴-1<y <1,故原函数的值域为(-1,1),即其反函数的概念域为(-1,1).例10.求函数y =x 2-x +1x 2+x +1(1<x <)3的值域.解析:将原函数式变形为:y =x 2-x +1x 2+x +1=-1+(x +1x )·11+(x +1x ),设P 1(-1,0)、P 2(1,0),λ=x +1x ,其中1<x <3.由函数λ=x +1x 的单调性可求得,2<λ<103.又当λ=2时,y =13;λ=103时,y =713,因此所求函数的值域为(13,713). (三)、求函数的解析式例11.二次函数f (x )=ax 2+bx +c 的图像通过点(-1,0)且x ≤f (x )≤12(x 2+1),对一切实数x 都成立,求f (x ).解析:因为当x ∈R ,总有x ≤f (x )≤12(x 2+1),为此不妨设P 1(x )、P[f (x )]、P 2(x 2+12)为数轴上三点,那么−→−P P 1=λ−→−2PP ,其中λ≥0,于是由定比分点坐标公式得: f (x )= x +λ·x 2+121+λ,又因为y = f (x )通过点(-1,0),代入上式得,0=-1+λ1+λ,解得λ=1,再将λ=1代入f (x )= x +λ·x 2+121+λ得,f (x )= 14x 2+12x +14.(四)、用于处置三角问题例12. 证明:y =2sin x +12sin x -1的值不在区间(13,3)内.证明:①当sin x =1时,y =3∉(13,3); ②当sin x =-1时,y =-1∉(13,3);③当sin x ≠±1时,将P(y )视为数轴上的点A(13)与B(3)的分点,由定比的坐标公式:λ=x -x 1x 2-x ,得λ=y -133-y =sin x +13(sin x -1)<0,即点P(y )为有向线段−→−AB 的外分点,故有y ∉(13,3). 综上可知,y =2sin x +12sin x -1的值不在区间(13,3)内.(六)、用于解决数列问题数列是概念在正整数集上的特殊函数.而等差数列的通项公式为:a n =a 1+(n -1)d =dn +(a 1-d )为变量n 的一次函数(d ≠0),其图象为直线.故而有A(m ,a m )、B(n ,a n )、C(p ,a p )三点共线(其中a m 、a n 、a p 别离为项数是m 、n 、p 的数列中的项).为此咱们把C 视为−→−AB 的一个定比分点,那么有λ=p -mn -p,a p=a m +λa n 1+λ.例13 .在3与19之间插入31个数,使它们成等差数列,求通项公式. 解析:设通项为a n ,令点P(n ,a n )分A(1,a 1),B(33,a 33)两点连成的线段所成的比为λ,那么有λ=n -133-n ,又由题意,a 1=3,a 33=19,于是有a n =a 1+λa 331+λ=3+n -133-n ×191+n -133-n =12n +52. 即通项a n =12n +52.命题2. 设数列{ a n }是等差数列,S n 是数列的前n 项和,其中S P 、S m 、S n 知足λ=p -m n -p (λ≠-1),那么S m m =S p p+λS n n1+λ.例14. 设S n 是等差数列的前n 项和,已知S 10=100,S 100=10,求S 110. 解析:取λ=110-10100-110=-10,那么S 110110=S 1010+λS 1001001+λ =10010+(-10)101001+(-10) =-1,因此S 110=-110.。
定比分点公式

定比分点公式
定比分点坐标介绍
定比分点坐标公式是数学中一种重要的工具,如果应用得当,常常可以巧妙地解决函数、等差数列、解析几何和不等式中的一些数学难题。
和两点间的中点公式一样,定比分点公式是一种给出中点坐标的公式。
定比分点应该理解为:“固定比例分割点的坐标公式”,中点公式是他的一种特殊情况。
我们可以用它寻找三角形的内心、质心和外心。
他是在一个线段中按照固定比例将线段分为两部分。
定比分点坐标公式是:
x=(x1+kx2)/(1+k)
设x轴上点A(x1),B(x2),坐标分别为x1,x2,点M(x)分AB为定比k:AM:MB=K
则(x-x1):(x2-x)=k
去分母得:x-x1=kx2-kx
所以x(1+k)=x1+kx2
所以x=(x1+kx2)/(1+k)
这就是定比分点的坐标公式
类似的方法可以推导平面上的定比分点的坐标公式
设A(X1,Y1),B(X2,Y2),点M(X,Y)分AB为定比k:AM:MB=K
则有公式x=(x1+kx2)/(1+k) , y=(y1+ky2)/(1+k)。
定点分比定理公式

定点分比定理公式
固定点分比定理是一种实用及经典的数学推理方法,它是一种艺术结合科学技术的创新,极为重要。
固定点分比定理更多地运用了数学的模型和实践,来检验问题的准确性和合理性。
简要来说,固定点分比定理是一种确定比例因子的方法,通过固定点和比例尺寸,它可以确定一个点与另一个点之间的距离。
举个例子,当一个点在一个集合变换中不变时,则称该点为固定点,而变换就会影响其他的点,即分比的系数即比例因子。
固定点分比定理的公式是:α:β=γ:δ。
即:α:β=γ:δ可以确定α:β与γ:δ之间的比例关系。
比如,固定点A的坐标是(1,1),B的坐标是(2,2),则可以得到A:B=1:1,也就是说从A到B的距离与它们之间的比例关系恒定不变。
固定点分比定理在求解不同称重比例、面积和距离问题中也有重要应用,最关键的是,它可以帮助我们根据一定规律,将复杂的问题简化,使之不仅简单而且易懂。
例如,在求解称重问题时,只要能够根据固定点分比定理求出比例因子,就可以得出各组称重值的比例,从而使之更容易地求解。
固定点分比定理可以帮助我们更清楚地了解几何问题的规律,是一种有用的数学理论。
它为工程应用、经济学及其它科学研究带来了许多好处,值得被更多人探索和研究。
高三数学线段的定比分点

高三备课组
一、基础知识
1、 线段的定比分点
(1)定义
设P1,P2是直线L上的两点,点P是L上不同 于P1,P2的任意一点,则存在一个实数 , P 使p1 p pp , 所 2 叫做点P分有向线段 1P 2 成的比。
0 ;当点P在线 当点P在线段 P 上时, 1P 2 <0 段 P1 P2 或 P2 P1 的延长线上时,
(2)定比分点的向量表达式:
点P分有向线段 P 所成的比是 ,则 1P 2 1 OP OP1 OP2 1 1 (O为平面内任意点)
(3)定比分点的坐标形式
x1 x 2 x 1 y y 2 y 1 1
,
(4)中点坐标公式
当 =1时,分点P为线段的中点,即有
练习:
若直线x+2y+m=0,按向量a 1,2平移后与圆C:
x 2 y 2 2x 4 y 0
相切
则实数m的值等于
例5.是否存在这样的平移,使抛物线: y x 2 平移后 过原点,且平移后的抛物线的顶点和它与 x 轴的两个 交点构成的三角形面积为 1 ,若不存在,说明理由;若 存在,求出函数的解析式。 例4.设函数
x1 x y y 1 x2 2 y2 2
ABC 的重心坐标公式: (5)
x A x B xC x 3 y A y B yC y 3
2、平移
(1)图形平移的定义
设F是坐标平面内的一个图形,将图上的所有 点按照同一方向移动同样长度,得到图形 F’ , 我们把这一过程叫做图形的平移。
A(4,1), B(3,4), C (1,2) , BD 是角 ABC 的平分 线,求点D的坐标及BD的长。